90 Commits

Author SHA1 Message Date
River Riddle
d6ee6a0310 Update the builder API to take ValueRange instead of ArrayRef<Value *>
This allows for users to provide operand_range and result_range in builder.create<> calls, instead of requiring an explicit copy into a separate data structure like SmallVector/std::vector.

PiperOrigin-RevId: 284360710
2019-12-07 10:35:41 -08:00
Alex Zinenko
75175134d4 Loop coalescing: fix pointer chainsing in use-chain traversal
In the replaceAllUsesExcept utility function called from loop coalescing the
iteration over the use-chain is incorrect. The use list nodes (IROperands) have
next/prev links, and bluntly resetting the use would make the loop to continue
on uses of the value that was replaced instead of the original one. As a
result, it could miss the existing uses and update the wrong ones. Make sure we
increment the iterator before updating the use in the loop body.

Reported-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#291.

PiperOrigin-RevId: 283754195
2019-12-04 07:42:29 -08:00
Lei Zhang
a0986bf43d NFC: Convert CmpIPredicate in StandardOps to use EnumAttr
This turns several hand-written functions to auto-generated ones.

PiperOrigin-RevId: 280684326
2019-11-15 10:17:31 -08:00
Mahesh Ravishankar
9cbbd8f4df Support lowering of imperfectly nested loops into GPU dialect.
The current lowering of loops to GPU only supports lowering of loop
nests where the loops mapped to workgroups and workitems are perfectly
nested. Here a new lowering is added to handle lowering of imperfectly
nested loop body with the following properties
1) The loops partitioned to workgroups are perfectly nested.
2) The loop body of the inner most loop partitioned to workgroups can
contain one or more loop nests that are to be partitioned across
workitems. Each individual loops nests partitioned to workitems should
also be perfectly nested.
3) The number of workgroups and workitems are not deduced from the
loop bounds but are passed in by the caller of the lowering as values.
4) For statements within the perfectly nested loop nest partitioned
across workgroups that are not loops, it is valid to have all threads
execute that statement. This is NOT verified.

PiperOrigin-RevId: 277958868
2019-11-01 10:52:06 -07:00
Kazuaki Ishizaki
8bfedb3ca5 Fix minor spelling tweaks (NFC)
Closes tensorflow/mlir#177

PiperOrigin-RevId: 275692653
2019-10-20 00:11:34 -07:00
River Riddle
2acc220f17 NFC: Remove trivial builder get methods.
These don't add any value, and some are even more restrictive than the respective static 'get' method.

PiperOrigin-RevId: 275391240
2019-10-17 20:08:34 -07:00
Uday Bondhugula
74eabdd14e NFC - clean up op accessor usage, std.load/store op verify, other stale info
- also remove stale terminology/references in docs

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#148

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/148 from bondhugula:cleanup e846b641a3c2936e874138aff480a23cdbf66591
PiperOrigin-RevId: 271618279
2019-09-27 11:58:24 -07:00
Christian Sigg
c900d4994e Fix a number of Clang-Tidy warnings.
PiperOrigin-RevId: 270632324
2019-09-23 02:34:27 -07:00
Uday Bondhugula
727a50ae2d Support symbolic operands for memref replacement; fix memrefNormalize
- allow symbols in index remapping provided for memref replacement
- fix memref normalize crash on cases with layout maps with symbols

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Reported by: Alex Zinenko

Closes tensorflow/mlir#139

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/139 from bondhugula:memref-rep-symbols 2f48c1fdb5d4c58915bbddbd9f07b18541819233
PiperOrigin-RevId: 269851182
2019-09-18 11:26:11 -07:00
MLIR Team
1c73be76d8 Unify error messages to start with lower-case.
PiperOrigin-RevId: 269803466
2019-09-18 07:45:17 -07:00
Uday Bondhugula
4f32ae61b4 NFC - Move explicit copy/dma generation utility out of pass and into LoopUtils
- turn copy/dma generation method into a utility in LoopUtils, allowing
  it to be reused elsewhere.

- no functional/logic change to the pass/utility

- trim down header includes in files affected

Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>

Closes tensorflow/mlir#124

COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/124 from bondhugula:datacopy 9f346e62e5bd9dd1986720a30a35f302eb4d3252
PiperOrigin-RevId: 269106088
2019-09-14 13:23:48 -07:00
River Riddle
4bfae66d70 Refactor the 'walk' methods for operations.
This change refactors and cleans up the implementation of the operation walk methods. After this refactoring is that the explicit template parameter for the operation type is no longer needed for the explicit op walks. For example:

    op->walk<AffineForOp>([](AffineForOp op) { ... });

is now accomplished via:

    op->walk([](AffineForOp op) { ... });

PiperOrigin-RevId: 266209552
2019-08-29 13:04:50 -07:00
River Riddle
ffde975e21 NFC: Move AffineOps dialect to the Dialect sub-directory.
PiperOrigin-RevId: 264482571
2019-08-20 15:36:39 -07:00
River Riddle
ba0fa92524 NFC: Move LLVMIR, SDBM, and StandardOps to the Dialect/ directory.
PiperOrigin-RevId: 264193915
2019-08-19 11:01:25 -07:00
Nicolas Vasilache
48a1baeb8a Refactor LoopParametricTiling as a test pass - NFC
This CL moves LoopParametricTiling into test/lib as a pass for purely testing purposes.

PiperOrigin-RevId: 259300264
2019-07-22 04:31:17 -07:00
Nicolas Vasilache
d2a872922f Refactor stripmineSink for AffineForOp - NFC
More moving less cloning.

PiperOrigin-RevId: 258947575
2019-07-19 11:40:37 -07:00
Nicolas Vasilache
db4cd1c8dc Utility function to map a loop on a parametric grid of virtual processors
This CL introduces a simple loop utility function which rewrites the bounds and step of a loop so as to become mappable on a regular grid of processors whose identifiers are given by SSA values.

A corresponding unit test is added.

For example, using CUDA terminology, and assuming a 2-d grid with processorIds = [blockIdx.x, threadIdx.x] and numProcessors = [gridDim.x, blockDim.x], the loop:
```
   loop.for %i = %lb to %ub step %step {
     ...
   }
```
is rewritten into a version resembling the following pseudo-IR:
```
   loop.for %i = %lb + threadIdx.x + blockIdx.x * blockDim.x to %ub
      step %gridDim.x * blockDim.x {
     ...
   }
```

PiperOrigin-RevId: 258945942
2019-07-19 11:40:31 -07:00
Nicolas Vasilache
5bc344743c Uniformize the API for the mlir::tile functions on AffineForOp and loop::ForOp
This CL adapts the recently introduced parametric tiling to have an API matching the tiling
of AffineForOp. The transformation using stripmineSink is more general and produces  imperfectly nested loops.

Perfect nesting invariants of the tiled version are obtained by selectively applying hoisting of ops to isolate perfectly nested bands. Such hoisting may fail to produce a perfect loop nest in cases where ForOp transitively depend on enclosing induction variables. In such cases, the API provides a LogicalResult return but the SimpleParametricLoopTilingPass does not currently use this result.

A new unit test is added with a triangular loop for which the perfect nesting property does not hold. For this example, the old behavior was to produce IR that did not verify (some use was not dominated by its def).

PiperOrigin-RevId: 258928309
2019-07-19 11:40:25 -07:00
Nicolas Vasilache
0002e2964d Move affine.for and affine.if to ODS
As the move to ODS is made, body and region names across affine and loop dialects are uniformized.

PiperOrigin-RevId: 258416590
2019-07-16 13:45:47 -07:00
Alex Zinenko
fc044e8929 Introduce loop coalescing utility and a simple pass
Multiple (perfectly) nested loops with independent bounds can be combined into
a single loop and than subdivided into blocks of arbitrary size for load
balancing or more efficient parallelism exploitation.  However, MLIR wants to
preserve the multi-dimensional multi-loop structure at higher levels of
abstraction. Introduce a transformation that coalesces nested loops with
independent bounds so that they can be further subdivided by tiling.

PiperOrigin-RevId: 258151016
2019-07-16 13:43:44 -07:00
Nicolas Vasilache
cca53e8527 Extract std.for std.if and std.terminator in their own dialect
These ops should not belong to the std dialect.
This CL extracts them in their own dialect and updates the corresponding conversions and tests.

PiperOrigin-RevId: 258123853
2019-07-16 13:43:18 -07:00
Nicolas Vasilache
cab671d166 Lower affine control flow to std control flow to LLVM dialect
This CL splits the lowering of affine to LLVM into 2 parts:
1. affine -> std
2. std -> LLVM

The conversions mostly consists of splitting concerns between the affine and non-affine worlds from existing conversions.
Short-circuiting of affine `if` conditions was never tested or exercised and is removed in the process, it can be reintroduced later if needed.

LoopParametricTiling.cpp is updated to reflect the newly added ForOp::build.

PiperOrigin-RevId: 257794436
2019-07-12 08:44:28 -07:00
River Riddle
9dbef0bf96 Rename FunctionAttr to SymbolRefAttr.
This allows for the attribute to hold symbolic references to other operations than FuncOp. This also allows for removing the dependence on FuncOp from the base Builder.

PiperOrigin-RevId: 257650017
2019-07-12 08:43:42 -07:00
River Riddle
8c44367891 NFC: Rename Function to FuncOp.
PiperOrigin-RevId: 257293379
2019-07-10 10:10:53 -07:00
Alex Zinenko
7a2e8726e8 Fix a test broken on some systems due to a mis-rebase.
PiperOrigin-RevId: 257190161
2019-07-09 07:43:42 -07:00
Alex Zinenko
9d03f5674f Implement parametric tiling on standard for loops
Parametric tiling can be used to extract outer loops with fixed number of
iterations.  This in turn enables mapping to GPU kernels on a fixed grid
independently of the range of the original loops, which may be unknown
statically, making the kernel adaptable to different sizes.  Provide a utility
function that also computes the parametric tile size given the range of the
loop.  Exercise the utility function through a simple pass that applies it to
all top-level loop nests.  Permutability or parallelism checks must be
performed before calling this utility function in actual passes.

Note that parametric tiling cannot be implemented in a purely affine way,
although it can be encoded using semi-affine maps.  The choice to implement it
on standard loops is guided by them being the common representation between
Affine loops, Linalg and GPU kernels.

PiperOrigin-RevId: 257180251
2019-07-09 06:37:41 -07:00
River Riddle
ce502af9cd NFC: Remove the various "::getFunction" methods.
These methods assume that a function is a valid builtin top-level operation, and removing these methods allows for decoupling FuncOp and IR/. Utility "getParentOfType" methods have been added to Operation/OpState to allow for querying the first parent operation of a given type.

PiperOrigin-RevId: 257018913
2019-07-08 12:40:08 -07:00
River Riddle
54cd6a7e97 NFC: Refactor Function to be value typed.
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).

PiperOrigin-RevId: 255983022
2019-07-01 11:39:00 -07:00
Nicolas Vasilache
0804750c9b Uniformize usage of OpBuilder& (NFC)
Historically the pointer-based version of builders was used.
This CL uniformizes to OpBuilder &

PiperOrigin-RevId: 254280885
2019-06-22 09:14:49 -07:00
River Riddle
f1b848e470 NFC: Rename FuncBuilder to OpBuilder and refactor to take a top level region instead of a function.
PiperOrigin-RevId: 251563898
2019-06-09 16:17:59 -07:00
MLIR Team
5a91b9896c Remove "size" property of affine maps.
--

PiperOrigin-RevId: 250572818
2019-06-01 20:09:02 -07:00
Andy Davis
90d4023c9b Factor out loop interchange code from LoopFusion into LoopUtils (NFC).
--

PiperOrigin-RevId: 247926512
2019-05-20 13:38:12 -07:00
River Riddle
d5b60ee840 Replace Operation::isa with llvm::isa.
--

PiperOrigin-RevId: 247789235
2019-05-20 13:37:52 -07:00
River Riddle
adca3c2edc Replace Operation::cast with llvm::cast.
--

PiperOrigin-RevId: 247785983
2019-05-20 13:37:42 -07:00
River Riddle
c5ecf9910a Add support for using llvm::dyn_cast/cast/isa for operation casts and replace usages of Operation::dyn_cast with llvm::dyn_cast.
--

PiperOrigin-RevId: 247780086
2019-05-20 13:37:31 -07:00
MLIR Team
41d90a85bd Automated rollback of changelist 247778391.
PiperOrigin-RevId: 247778691
2019-05-20 13:37:20 -07:00
River Riddle
02e03b9bf4 Add support for using llvm::dyn_cast/cast/isa for operation casts and replace usages of Operation::dyn_cast with llvm::dyn_cast.
--

PiperOrigin-RevId: 247778391
2019-05-20 13:37:10 -07:00
River Riddle
b14c4b4ca8 Add support for basic remark diagnostics. This is the minimal functionality needed to separate notes from remarks. It also provides a starting point to start building out better remark infrastructure.
--

PiperOrigin-RevId: 246175216
2019-05-06 08:24:02 -07:00
MLIR Team
0cd589c337 Create a LoopUtil function to return perfectly nested loop set
--

PiperOrigin-RevId: 242019230
2019-04-05 07:42:01 -07:00
River Riddle
6fa3181329 Remove the non-postorder walk functions from Function/Block/Instruction and rename walkPostOrder to walk.
--

PiperOrigin-RevId: 241965239
2019-04-05 07:41:23 -07:00
River Riddle
99b87c9707 Replace usages of Instruction with Operation in the Transforms/ directory.
PiperOrigin-RevId: 240636130
2019-03-29 17:47:26 -07:00
Alex Zinenko
5a5bba0279 Introduce affine terminator
Due to legacy reasons (ML/CFG function separation), regions in affine control
flow operations require contained blocks not to have terminators.  This is
inconsistent with the notion of the block and may complicate code motion
between regions of affine control operations and other regions.

Introduce `affine.terminator`, a special terminator operation that must be used
to terminate blocks inside affine operations and transfers the control back to
he region enclosing the affine operation.  For brevity and readability reasons,
allow `affine.for` and `affine.if` to omit the `affine.terminator` in their
regions when using custom printing and parsing format.  The custom parser
injects the `affine.terminator` if it is missing so as to always have it
present in constructed operations.

Update transformations to account for the presence of terminator.  In
particular, most code motion transformation between loops should leave the
terminator in place, and code motion between loops and non-affine blocks should
drop the terminator.

PiperOrigin-RevId: 240536998
2019-03-29 17:44:24 -07:00
River Riddle
f9d91531df Replace usages of Instruction with Operation in the /IR directory.
This is step 2/N to renaming Instruction to Operation.

PiperOrigin-RevId: 240459216
2019-03-29 17:43:37 -07:00
River Riddle
9ffdc930c0 Rename the Instruction class to Operation. This just renames the class, usages of Instruction will still refer to a typedef in the interim.
This is step 1/N to renaming Instruction to Operation.

PiperOrigin-RevId: 240431520
2019-03-29 17:42:50 -07:00
River Riddle
af1abcc80b Replace usages of "operator->" with "." for the AffineOps.
Note: The "operator->" method is a temporary helper for the de-const transition and is gradually being phased out.
PiperOrigin-RevId: 240179439
2019-03-29 17:39:19 -07:00
River Riddle
832567b379 NFC: Rename the 'for' operation in the AffineOps dialect to 'affine.for' and set the namespace of the AffineOps dialect to 'affine'.
PiperOrigin-RevId: 240165792
2019-03-29 17:39:03 -07:00
Chris Lattner
d9b5bc8f55 Remove OpPointer, cleaning up a ton of code. This also moves Ops to using
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().

This removes another 200 lines of code.

PiperOrigin-RevId: 240068113
2019-03-29 17:36:21 -07:00
Chris Lattner
dd2b2ec542 Push a bunch of 'consts' out of the *Op structure, in prep for removing
OpPointer.

PiperOrigin-RevId: 240044712
2019-03-29 17:35:35 -07:00
Nicolas Vasilache
fc5bbdd6c8 Improve comment for augmentMapAndBounds
Followup from a previous CL.

PiperOrigin-RevId: 239591775
2019-03-29 17:27:57 -07:00
Chris Lattner
589df37142 Move to new const model, part 1: remove ConstOpPointer.
This eliminate ConstOpPointer (but keeps OpPointer for now) by making OpPointer
implicitly launder const in a const incorrect way.  It will eventually go away
entirely, this is a progressive step towards the new const model.

PiperOrigin-RevId: 239512640
2019-03-29 17:26:56 -07:00