This reverts commit
87b7f63a11,
reapplying
7e66cf74fb
with a small (and probably temporary)
change to generate more debug info to help with diagnosing buildbot
issues.
This reverts commit a774de807e56c1147d4630bfec3110c11d41776e.
This is the same changes as last time, plus:
* We load the binary into the target object so that on Windows, we can
resolve the locations of the functions.
* We now assert that each required breakpoint has at least 1 location,
to prevent an issue like that in the future.
* We are less strict about the unsupported error message, because it
prints "error: windows" on Windows instead of "error: gdb-remote".
Reverts llvm/llvm-project#123945
Has failed on the Windows on Arm buildbot:
https://lab.llvm.org/buildbot/#/builders/141/builds/5865
```
********************
Unresolved Tests (2):
lldb-api :: functionalities/reverse-execution/TestReverseContinueBreakpoints.py
lldb-api :: functionalities/reverse-execution/TestReverseContinueWatchpoints.py
********************
Failed Tests (1):
lldb-api :: functionalities/reverse-execution/TestReverseContinueNotSupported.py
```
Reverting while I reproduce locally.
This reverts commit 22561cfb443267905d4190f0e2a738e6b412457f and fixes
b7b9ccf44988edf49886743ae5c3cf4184db211f (#112079).
The problem is that x86_64 and Arm 32-bit have memory regions above the
stack that are readable but not writeable. First Arm:
```
(lldb) memory region --all
<...>
[0x00000000fffcf000-0x00000000ffff0000) rw- [stack]
[0x00000000ffff0000-0x00000000ffff1000) r-x [vectors]
[0x00000000ffff1000-0xffffffffffffffff) ---
```
Then x86_64:
```
$ cat /proc/self/maps
<...>
7ffdcd148000-7ffdcd16a000 rw-p 00000000 00:00 0 [stack]
7ffdcd193000-7ffdcd196000 r--p 00000000 00:00 0 [vvar]
7ffdcd196000-7ffdcd197000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 --xp 00000000 00:00 0 [vsyscall]
```
Compare this to AArch64 where the test did pass:
```
$ cat /proc/self/maps
<...>
ffffb87dc000-ffffb87dd000 r--p 00000000 00:00 0 [vvar]
ffffb87dd000-ffffb87de000 r-xp 00000000 00:00 0 [vdso]
ffffb87de000-ffffb87e0000 r--p 0002a000 00:3c 76927217 /usr/lib/aarch64-linux-gnu/ld-linux-aarch64.so.1
ffffb87e0000-ffffb87e2000 rw-p 0002c000 00:3c 76927217 /usr/lib/aarch64-linux-gnu/ld-linux-aarch64.so.1
fffff4216000-fffff4237000 rw-p 00000000 00:00 0 [stack]
```
To solve this, look up the memory region of the stack pointer (using
https://lldb.llvm.org/resources/lldbgdbremote.html#qmemoryregioninfo-addr)
and constrain the read to within that region. Since we know the stack is
all readable and writeable.
I have also added skipIfRemote to the tests, since getting them working
in that context is too complex to be worth it.
Memory write failures now display the range they tried to write, and
register write errors will show the name of the register where possible.
The patch also includes a workaround for a an issue where the test code
could mistake an `x` response that happens to begin with an `O` for an
output packet (stdout). This workaround will not be necessary one we
start using the [new
implementation](https://discourse.llvm.org/t/rfc-fixing-incompatibilties-of-the-x-packet-w-r-t-gdb/84288)
of the `x` packet.
---------
Co-authored-by: Pavel Labath <pavel@labath.sk>
This commit adds support for a
`SBProcess::ContinueInDirection()` API. A user-accessible command for
this will follow in a later commit.
This feature depends on a gdbserver implementation (e.g. `rr`) providing
support for the `bc` and `bs` packets. `lldb-server` does not support
those packets, and there is no plan to change that. For testing
purposes, this commit adds a Python implementation of *very limited*
record-and-reverse-execute functionality, implemented as a proxy between
lldb and lldb-server in `lldbreverse.py`. This should not (and in
practice cannot) be used for anything except testing.
The tests here are quite minimal but we test that simple breakpoints and
watchpoints work as expected during reverse execution, and that
conditional breakpoints and watchpoints work when the condition calls a
function that must be executed in the forward direction.
Reverting this again; I added a commit which added @skipIfDarwin
markers to the TestReverseContinueBreakpoints.py and
TestReverseContinueNotSupported.py API tests, which use lldb-server
in gdbserver mode which does not work on Darwin. But the aarch64 ubuntu
bot reported a failure on TestReverseContinueBreakpoints.py,
https://lab.llvm.org/buildbot/#/builders/59/builds/6397
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/test/API/functionalities/reverse-execution/TestReverseContinueBreakpoints.py", line 63, in test_reverse_continue_skip_breakpoint
self.reverse_continue_skip_breakpoint_internal(async_mode=False)
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/test/API/functionalities/reverse-execution/TestReverseContinueBreakpoints.py", line 81, in reverse_continue_skip_breakpoint_internal
self.expect(
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/packages/Python/lldbsuite/test/lldbtest.py", line 2372, in expect
self.runCmd(
File "/home/tcwg-buildbot/worker/lldb-aarch64-ubuntu/llvm-project/lldb/packages/Python/lldbsuite/test/lldbtest.py", line 1002, in runCmd
self.assertTrue(self.res.Succeeded(), msg + output)
AssertionError: False is not true : Process should be stopped due to history boundary
Error output:
error: Process must be launched.
This reverts commit 4f297566b3150097de26c6a23a987d2bd5fc19c5.
This commit only adds support for the
`SBProcess::ReverseContinue()` API. A user-accessible command for this
will follow in a later commit.
This feature depends on a gdbserver implementation (e.g. `rr`) providing
support for the `bc` and `bs` packets. `lldb-server` does not support
those packets, and there is no plan to change that. So, for testing
purposes, `lldbreverse.py` wraps `lldb-server` with a Python
implementation of *very limited* record-and-replay functionality for use
by *tests only*.
The majority of this PR is test infrastructure (about 700 of the 950
lines added).
This commit only adds support for the
`SBProcess::ReverseContinue()` API. A user-accessible command for this
will follow in a later commit.
This feature depends on a gdbserver implementation (e.g. `rr`) providing
support for the `bc` and `bs` packets. `lldb-server` does not support
those packets, and there is no plan to change that. So, for testing
purposes, `lldbreverse.py` wraps `lldb-server` with a Python
implementation of *very limited* record-and-replay functionality for use
by *tests only*.
The majority of this PR is test infrastructure (about 700 of the 950
lines added).
This patch attempts to fix a dead lock when loading modules in a Scripted
Process.
This issue was triggered by loading the modules after the process did resume,
but before the process actually stop, causing the language runtime mutex to
be locked by a separate thread, responsible to unwind the stack (using
the runtime unwind plan), while the module loading thread was trying to
notify the runtimes of the newly loaded module.
To address that, this patch moves the module loading logic to be done before
sending the stop event, to prevent the dead lock situation described above.
Differential Revision: https://reviews.llvm.org/D154649
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
This patch adds support for breakpoint setting to Scripted Processes.
For now, Scripted Processes only support setting software breakpoints.
When doing interactive scripted process debugging, it makes use of the
memory writing capability to write the trap opcodes in the memory of the
driving process. However the real process' target doesn't keep track of
the breakpoints that got added by the scripted process. This is a design
that we might need to change in the future, since we'll probably need to
do some book keeping to handle breakpoints that were set by different
scripted processes.
Differential Revision: https://reviews.llvm.org/D145296
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
While debugging a Scripted Process, in order to update its state and
work nicely with lldb's execution model, it needs to toggle its private
state from running to stopped, which will result in broadcasting a
process state changed event to the debugger listener.
Originally, this state update was done systematically in the Scripted
Process C++ plugin, however in order to make scripted process
interactive, we need to be able to update their state dynamically.
This patch makes use of the recent addition of the
SBProcess::ForceScriptedState to programatically, and moves the
process private state update to the python implementation of the resume
method instead of doing it in ScriptedProcess::DoResume.
This patch also removes the unused ShouldStop & Stop scripted
process APIs, and adds new ScriptedInterface transform methods for
boolean arguments. This allow the user to programmatically decide if
after running the process, we should stop it (which is the default setting).
Differential Revision: https://reviews.llvm.org/D145295
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces a new method to the SBProcess API called
ForceScriptedState. As the name suggests, this affordance will allow the
user to alter the state of the scripted process programatically.
This is necessary to update the scripted process state when perform
interactive debugging.
Differential Revision: https://reviews.llvm.org/D145294
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch should fix an assertion that causes some test failures:
https://ci.swift.org/view/LLDB/job/llvm-org-lldb-release-debuginfo/3587/console
This was caused by the changes introduces in `88f409194d5a` where we
replaced `DidLaunch` by `DidResume` in the `ScriptedProcess` class.
However, by the time we resume the process, the pid should be already
set. To address this, this patch brings back `DidLaunch` which will
initialize the ScriptedProcess pid with a placeholder value. That value
will be updated in `DidResume` to the final pid.
Note, this 2 stage PID initialization is necessary sometimes, when the
scripted process gets stopped at entry (launch) and gets assigned an
object that contains the PID value. In this case, we need to update the
PID when we resume the process after we've stopped at entry.
This also replaces the default scripted process id to an arbitrary
number (42) since the current value (0) is considered invalid.
Differential Revision: https://reviews.llvm.org/D148153
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Now that we can pass Python objects to the scripted process instance, we
don't need to parse the crashlog twice anymore.
Differential revision: https://reviews.llvm.org/D148063
This patch moves `ScriptedMetadata.h` from the `Interpreter` directory to
the `Utility` sub-directory since `ProcessInfo.h` depends on it.
It also gets rid of the unused `OptionGroupPythonClassWithDict`
constructor for `ScriptedMetadata` which would address the layering
violation.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds support for breakpoint setting to Scripted Processes.
For now, Scripted Processes only support setting software breakpoints.
When doing interactive scripted process debugging, it makes use of the
memory writing capability to write the trap opcodes in the memory of the
driving process. However the real process' target doesn't keep track of
the breakpoints that got added by the scripted process. This is a design
that we might need to change in the future, since we'll probably need to
do some book keeping to handle breakpoints that were set by different
scripted processes.
Differential Revision: https://reviews.llvm.org/D145296
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
While debugging a Scripted Process, in order to update its state and
work nicely with lldb's execution model, it needs to toggle its private
state from running to stopped, which will result in broadcasting a
process state changed event to the debugger listener.
Originally, this state update was done systematically in the Scripted
Process C++ plugin, however in order to make scripted process
interactive, we need to be able to update their state dynamically.
This patch makes use of the recent addition of the
`SBProcess::ForceScriptedState` to programatically, and moves the
process private state update to the python implementation of the `resume`
method instead of doing it in `ScriptedProcess::DoResume`.
This patch also removes the unused `ShouldStop` & `Stop` scripted
process APIs, and adds new ScriptedInterface transform methods for
boolean arguments. This allow the user to programmatically decide if
after running the process, we should stop it (which is the default setting).
Differential Revision: https://reviews.llvm.org/D145295
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces a new method to the SBProcess API called
ForceScriptedState. As the name suggests, this affordance will allow the
user to alter the private state of the scripted process programatically.
This is necessary to update the scripted process state when perform
interactive debugging.
Differential Revision: https://reviews.llvm.org/D145294
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds memory writing capabilities to the Scripted Process plugin.
This allows to user to get a target address and a memory buffer on the
python scripted process implementation that the user can make processing
on before performing the actual write.
This will also be used to write trap instruction to a real process
memory to set a breakpoint.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds process attach capabilities to the ScriptedProcess
plugin. This doesn't really expects a PID or process name, since the
process state is already script, however, this allows to create a
scripted process without requiring to have an executuble in the target.
In order to do so, this patch also turns the scripted process related
getters and setters from the `ProcessLaunchInfo` and
`ProcessAttachInfo` classes to a `ScriptedMetadata` instance and moves
it in the `ProcessInfo` class, so it can be accessed interchangeably.
This also adds the necessary SWIG wrappers to convert the internal
`Process{Attach,Launch}InfoSP` into a `SB{Attach,Launch}Info` to pass it
as argument the scripted process python implementation and convert it
back to the internal representation.
rdar://104577406
Differential Revision: https://reviews.llvm.org/D143104
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch should address a bug when a user have multiple scripted
processes in the same debugging session.
In order for the scripted process plugin to be able to call into the
scripted object instance methods to fetch the necessary data to
reconstruct its state, the scripted process plugin calls into a
scripted process interface, that has a reference to the created script
object instance.
However, prior to this patch, we only had a single instance of the
scripted process interface, living the script interpreter. So every time
a new scripted process plugin was created, it would overwrite the script
object instance that was held by the single scripted process interface
in the script interpreter.
That would cause all the method calls made to the scripted process
interface to be dispatched by the last instanciated script object
instance, which is wrong.
In order to prevent that, this patch moves the scripted process
interface reference to be help by the scripted process plugin itself.
rdar://104882562
Differential Revision: https://reviews.llvm.org/D143308
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces a new `GetScriptedImplementation` method to the
SBProcess class in the SBAPI. It will allow users of Scripted Processes to
fetch the scripted implementation object from to script interpreter to be
able to interact with it directly (without having to go through lldb).
This allows to user to perform action that are not specified in the
scripted process interface, like calling un-specified methods, but also
to enrich the implementation, by passing it complex objects.
Differential Revision: https://reviews.llvm.org/D143236
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch enhances queue support in Scripted Processes.
Scripted Threads could already report their queue name if they had one,
but this information was only surfaced when getting the process and
thread status.
However, no queue was create and added to the scripted process queue
list. This patch improves that by creating a queue from the scripted
thread queue name. For now, it uses an invalid queue id, since the
scripted thread doesn't expose this capability yet, but this could
easily be supported if the queue id information is available.
rdar://98844004
Differential Revision: https://reviews.llvm.org/D139853
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch moves the ScriptedProcessInfo class out of the
ScriptedProcess and hoist it as a standalone interpreter class, so it can be
reused with the Scripted Platform.
Differential Revision: https://reviews.llvm.org/D139247
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
For an exception crashlog, the thread backtraces aren't usually very helpful
and instead, developpers look at the "Application Specific Backtrace" that
was generated by `objc_exception_throw`.
LLDB could already parse and symbolicate these Application Specific Backtraces
for regular textual-based crashlog, so this patch adds support to parse them
in JSON crashlogs, and materialize them a HistoryThread extending the
crashed ScriptedThread.
This patch also includes the Application Specific Information messages
as part of the process extended crash information log. To do so, the
ScriptedProcess Python interface has a new GetMetadata method that
returns an arbitrary dictionary with data related to the process.
rdar://93207586
Differential Revision: https://reviews.llvm.org/D126260
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Make constructors of the Process and its subclasses class protected,
to prevent accidentally constructing Process on stack when it could be
afterwards accessed via a shared_ptr (since it uses
std::enable_shared_from_this<>).
The only place where a stack allocation was used were unittests,
and fixing them via declaring an explicit public constructor
in the respective mock classes is trivial.
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.llvm.org/D131275
This patch introduces a new way to load modules programatically with
Scripted Processes. To do so, the scripted process blueprint holds a
list of dictionary describing the modules to load, which their path or
uuid, load address and eventually a slide offset.
LLDB will fetch that list after launching the ScriptedProcess, and
iterate over each entry to create the module that will be loaded in the
Scripted Process' target.
The patch also refactors the StackCoreScriptedProcess test to stop
inside the `libbaz` module and make sure it's loaded correctly and that
we can fetch some variables from it.
rdar://74520238
Differential Revision: https://reviews.llvm.org/D120969
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This reverts commit 0df522969a7a0128052bd79182c8d58e00556e2f.
Additional checks are added to fix the detection of the last memory region
in GetMemoryRegions or repeating the "memory region" command when the
target has non-address bits.
Normally you keep reading from address 0, looking up each region's end
address until you get LLDB_INVALID_ADDR as the region end address.
(0xffffffffffffffff)
This is what the remote will return once you go beyond the last mapped region:
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
[0x0001000000000000-0xffffffffffffffff) ---
Problem is that when we "fix" the lookup address, we remove some bits
from it. On an AArch64 system we have 48 bit virtual addresses, so when
we fix the end address of the [stack] region the result is 0.
So we loop back to the start.
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
[0x0000000000000000-0x0000000000400000) ---
To fix this I added an additional check for the last range.
If the end address of the region is different once you apply
FixDataAddress, we are at the last region.
Since the end of the last region will be the last valid mappable
address, plus 1. That 1 will be removed by the ABI plugin.
The only side effect is that on systems with non-address bits, you
won't get that last catch all unmapped region from the max virtual
address up to 0xf...f.
[0x0000fffff8000000-0x0000fffffffdf000) ---
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
<ends here>
Though in some way this is more correct because that region is not
just unmapped, it's not mappable at all.
No extra testing is needed because this is already covered by
TestMemoryRegion.py, I simply forgot to run it on system that had
both top byte ignore and pointer authentication.
This change has been tested on a qemu VM with top byte ignore,
memory tagging and pointer authentication enabled.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D115508
This reverts commit fac3f20de55769d028bd92220e74f22fa57dd4b2.
I found this has broken how we detect the last memory region in
GetMemoryRegions/"memory region" command.
When you're debugging an AArch64 system with pointer authentication,
the ABI plugin will remove the top bit from the end address of the last
user mapped area.
(lldb)
[0x0000fffffffdf000-0x0001000000000000) rw- [stack]
ABI plugin removes anything above the 48th bit (48 bit virtual addresses
by default on AArch64, leaving an address of 0.
(lldb)
[0x0000000000000000-0x0000000000400000) ---
You get back a mapping for 0 and get into an infinite loop.
This patch changes the ScriptedThread class to create the register
context when Process::RefreshStateAfterStop is called rather than
doing it in the thread constructor.
This is required to update the thread state for execution control.
Differential Revision: https://reviews.llvm.org/D112167
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new `StructuredData::Dictionary` constructor that
takes a `StructuredData::ObjectSP` as an argument. This is used to pass
the opaque_ptr from the `SBStructuredData` used to initialize a
ScriptedProecss, to the `ProcessLaunchInfo` class.
This also updates `SBLaunchInfo::SetScriptedProcessDictionary` to
reflect the formentionned changes which solves the nullptr deref.
Differential Revision: https://reviews.llvm.org/D112107
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This reverts commit 5fbcf677347e38718461496d9e9e184a7a30c3fb.
ProcessDebugger is used in ProcessWindows and NativeProcessWindows.
I thought I was simplifying things by renaming to DoGetMemoryRegionInfo
in ProcessDebugger but the Native process side expects "GetMemoryRegionInfo".
Follow the pattern that WriteMemory uses. So:
* ProcessWindows::DoGetMemoryRegioninfo calls ProcessDebugger::GetMemoryRegionInfo
* NativeProcessWindows::GetMemoryRegionInfo does the same
On AArch64 we have various things using the non address bits
of pointers. This means when you lookup their containing region
you won't find it if you don't remove them.
This changes Process GetMemoryRegionInfo to a non virtual method
that uses the current ABI plugin to remove those bits. Then it
calls DoGetMemoryRegionInfo.
That function does the actual work and is virtual to be overriden
by Process implementations.
A test case is added that runs on AArch64 Linux using the top
byte ignore feature.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D102757
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
This patch introduces the `ScriptedThread` class with its python
interface.
When used with `ScriptedProcess`, `ScriptedThreaad` can provide various
information such as the thread state, stop reason or even its register
context.
This can be used to reconstruct the program stack frames using lldb's unwinder.
rdar://74503836
Differential Revision: https://reviews.llvm.org/D107585
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D100384
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces Scripted Processes to lldb.
The goal, here, is to be able to attach in the debugger to fake processes
that are backed by script files (in Python, Lua, Swift, etc ...) and
inspect them statically.
Scripted Processes can be used in cooperative multithreading environments
like the XNU Kernel or other real-time operating systems, but it can
also help us improve the debugger testing infrastructure by writting
synthetic tests that simulates hard-to-reproduce process/thread states.
Although ScriptedProcess is not feature-complete at the moment, it has
basic execution capabilities and will improve in the following patches.
rdar://65508855
Differential Revision: https://reviews.llvm.org/D95713
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>