498 lines
22 KiB
C++
498 lines
22 KiB
C++
//===-- PolymorphicOpConversion.cpp ---------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/BuiltinModules.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/FIRDialect.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
|
|
#include "flang/Optimizer/Dialect/FIRType.h"
|
|
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
|
|
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
|
|
#include "flang/Optimizer/Support/InternalNames.h"
|
|
#include "flang/Optimizer/Support/TypeCode.h"
|
|
#include "flang/Optimizer/Transforms/Passes.h"
|
|
#include "flang/Runtime/derived-api.h"
|
|
#include "flang/Semantics/runtime-type-info.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
namespace fir {
|
|
#define GEN_PASS_DEF_POLYMORPHICOPCONVERSION
|
|
#include "flang/Optimizer/Transforms/Passes.h.inc"
|
|
} // namespace fir
|
|
|
|
using namespace fir;
|
|
using namespace mlir;
|
|
|
|
// Reconstruct binding tables for dynamic dispatch.
|
|
using BindingTable = llvm::DenseMap<llvm::StringRef, unsigned>;
|
|
using BindingTables = llvm::DenseMap<llvm::StringRef, BindingTable>;
|
|
|
|
static std::string getTypeDescriptorTypeName() {
|
|
llvm::SmallVector<llvm::StringRef, 1> modules = {
|
|
Fortran::semantics::typeInfoBuiltinModule};
|
|
return fir::NameUniquer::doType(modules, /*proc=*/{}, /*blockId=*/0,
|
|
Fortran::semantics::typeDescriptorTypeName,
|
|
/*kinds=*/{});
|
|
}
|
|
|
|
static std::optional<mlir::Type>
|
|
buildBindingTables(BindingTables &bindingTables, mlir::ModuleOp mod) {
|
|
|
|
std::optional<mlir::Type> typeDescriptorType;
|
|
std::string typeDescriptorTypeName = getTypeDescriptorTypeName();
|
|
// The binding tables are defined in FIR after lowering inside fir.type_info
|
|
// operations. Go through each binding tables and store the procedure name and
|
|
// binding index for later use by the fir.dispatch conversion pattern.
|
|
for (auto typeInfo : mod.getOps<fir::TypeInfoOp>()) {
|
|
if (!typeDescriptorType && typeInfo.getSymName() == typeDescriptorTypeName)
|
|
typeDescriptorType = typeInfo.getType();
|
|
unsigned bindingIdx = 0;
|
|
BindingTable bindings;
|
|
if (typeInfo.getDispatchTable().empty()) {
|
|
bindingTables[typeInfo.getSymName()] = bindings;
|
|
continue;
|
|
}
|
|
for (auto dtEntry :
|
|
typeInfo.getDispatchTable().front().getOps<fir::DTEntryOp>()) {
|
|
bindings[dtEntry.getMethod()] = bindingIdx;
|
|
++bindingIdx;
|
|
}
|
|
bindingTables[typeInfo.getSymName()] = bindings;
|
|
}
|
|
return typeDescriptorType;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// SelectTypeOp converted to an if-then-else chain
|
|
///
|
|
/// This lowers the test conditions to calls into the runtime.
|
|
class SelectTypeConv : public OpConversionPattern<fir::SelectTypeOp> {
|
|
public:
|
|
using OpConversionPattern<fir::SelectTypeOp>::OpConversionPattern;
|
|
|
|
SelectTypeConv(mlir::MLIRContext *ctx)
|
|
: mlir::OpConversionPattern<fir::SelectTypeOp>(ctx) {}
|
|
|
|
llvm::LogicalResult
|
|
matchAndRewrite(fir::SelectTypeOp selectType, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override;
|
|
|
|
private:
|
|
// Generate comparison of type descriptor addresses.
|
|
mlir::Value genTypeDescCompare(mlir::Location loc, mlir::Value selector,
|
|
mlir::Type ty, mlir::ModuleOp mod,
|
|
mlir::PatternRewriter &rewriter) const;
|
|
|
|
llvm::LogicalResult genTypeLadderStep(mlir::Location loc,
|
|
mlir::Value selector,
|
|
mlir::Attribute attr, mlir::Block *dest,
|
|
std::optional<mlir::ValueRange> destOps,
|
|
mlir::ModuleOp mod,
|
|
mlir::PatternRewriter &rewriter,
|
|
fir::KindMapping &kindMap) const;
|
|
|
|
llvm::SmallSet<llvm::StringRef, 4> collectAncestors(fir::TypeInfoOp dt,
|
|
mlir::ModuleOp mod) const;
|
|
};
|
|
|
|
/// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch
|
|
/// table.
|
|
struct DispatchOpConv : public OpConversionPattern<fir::DispatchOp> {
|
|
using OpConversionPattern<fir::DispatchOp>::OpConversionPattern;
|
|
|
|
DispatchOpConv(mlir::MLIRContext *ctx, const BindingTables &bindingTables,
|
|
std::optional<mlir::Type> typeDescriptorType)
|
|
: mlir::OpConversionPattern<fir::DispatchOp>(ctx),
|
|
bindingTables(bindingTables), typeDescriptorType{typeDescriptorType} {}
|
|
|
|
llvm::LogicalResult
|
|
matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const override {
|
|
mlir::Location loc = dispatch.getLoc();
|
|
|
|
if (bindingTables.empty())
|
|
return emitError(loc) << "no binding tables found";
|
|
|
|
// Get derived type information.
|
|
mlir::Type declaredType =
|
|
fir::getDerivedType(dispatch.getObject().getType().getEleTy());
|
|
assert(mlir::isa<fir::RecordType>(declaredType) && "expecting fir.type");
|
|
auto recordType = mlir::dyn_cast<fir::RecordType>(declaredType);
|
|
|
|
// Lookup for the binding table.
|
|
auto bindingsIter = bindingTables.find(recordType.getName());
|
|
if (bindingsIter == bindingTables.end())
|
|
return emitError(loc)
|
|
<< "cannot find binding table for " << recordType.getName();
|
|
|
|
// Lookup for the binding.
|
|
const BindingTable &bindingTable = bindingsIter->second;
|
|
auto bindingIter = bindingTable.find(dispatch.getMethod());
|
|
if (bindingIter == bindingTable.end())
|
|
return emitError(loc)
|
|
<< "cannot find binding for " << dispatch.getMethod();
|
|
unsigned bindingIdx = bindingIter->second;
|
|
|
|
mlir::Value passedObject = dispatch.getObject();
|
|
|
|
if (!typeDescriptorType)
|
|
return emitError(loc) << "cannot find " << getTypeDescriptorTypeName()
|
|
<< " fir.type_info that is required to get the "
|
|
"related builtin type and lower fir.dispatch";
|
|
mlir::Type typeDescTy = *typeDescriptorType;
|
|
|
|
// clang-format off
|
|
// Before:
|
|
// fir.dispatch "proc1"(%11 :
|
|
// !fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>)
|
|
|
|
// After:
|
|
// %12 = fir.box_tdesc %11 : (!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>) -> !fir.tdesc<none>
|
|
// %13 = fir.convert %12 : (!fir.tdesc<none>) -> !fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>>
|
|
// %14 = fir.field_index binding, !fir.type<_QM__fortran_type_infoTderivedtype>
|
|
// %15 = fir.coordinate_of %13, %14 : (!fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>>, !fir.field) -> !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>>
|
|
// %bindings = fir.load %15 : !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>>
|
|
// %16 = fir.box_addr %bindings : (!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>) -> !fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>
|
|
// %17 = fir.coordinate_of %16, %c0 : (!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>, index) -> !fir.ref<!fir.type<_QM__fortran_type_infoTbinding>>
|
|
// %18 = fir.field_index proc, !fir.type<_QM__fortran_type_infoTbinding>
|
|
// %19 = fir.coordinate_of %17, %18 : (!fir.ref<!fir.type<_QM__fortran_type_infoTbinding>>, !fir.field) -> !fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>>
|
|
// %20 = fir.field_index __address, !fir.type<_QM__fortran_builtinsT__builtin_c_funptr>
|
|
// %21 = fir.coordinate_of %19, %20 : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>>, !fir.field) -> !fir.ref<i64>
|
|
// %22 = fir.load %21 : !fir.ref<i64>
|
|
// %23 = fir.convert %22 : (i64) -> (() -> ())
|
|
// fir.call %23() : () -> ()
|
|
// clang-format on
|
|
|
|
// Load the descriptor.
|
|
mlir::Type fieldTy = fir::FieldType::get(rewriter.getContext());
|
|
mlir::Type tdescType =
|
|
fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext()));
|
|
mlir::Value boxDesc =
|
|
fir::BoxTypeDescOp::create(rewriter, loc, tdescType, passedObject);
|
|
boxDesc = fir::ConvertOp::create(
|
|
rewriter, loc, fir::ReferenceType::get(typeDescTy), boxDesc);
|
|
|
|
// Load the bindings descriptor.
|
|
auto bindingsCompName = Fortran::semantics::bindingDescCompName;
|
|
fir::RecordType typeDescRecTy = mlir::cast<fir::RecordType>(typeDescTy);
|
|
mlir::Value field =
|
|
fir::FieldIndexOp::create(rewriter, loc, fieldTy, bindingsCompName,
|
|
typeDescRecTy, mlir::ValueRange{});
|
|
mlir::Type coorTy =
|
|
fir::ReferenceType::get(typeDescRecTy.getType(bindingsCompName));
|
|
mlir::Value bindingBoxAddr =
|
|
fir::CoordinateOp::create(rewriter, loc, coorTy, boxDesc, field);
|
|
mlir::Value bindingBox = fir::LoadOp::create(rewriter, loc, bindingBoxAddr);
|
|
|
|
// Load the correct binding.
|
|
mlir::Value bindings = fir::BoxAddrOp::create(rewriter, loc, bindingBox);
|
|
fir::RecordType bindingTy = fir::unwrapIfDerived(
|
|
mlir::cast<fir::BaseBoxType>(bindingBox.getType()));
|
|
mlir::Type bindingAddrTy = fir::ReferenceType::get(bindingTy);
|
|
mlir::Value bindingIdxVal =
|
|
mlir::arith::ConstantOp::create(rewriter, loc, rewriter.getIndexType(),
|
|
rewriter.getIndexAttr(bindingIdx));
|
|
mlir::Value bindingAddr = fir::CoordinateOp::create(
|
|
rewriter, loc, bindingAddrTy, bindings, bindingIdxVal);
|
|
|
|
// Get the function pointer.
|
|
auto procCompName = Fortran::semantics::procCompName;
|
|
mlir::Value procField = fir::FieldIndexOp::create(
|
|
rewriter, loc, fieldTy, procCompName, bindingTy, mlir::ValueRange{});
|
|
fir::RecordType procTy =
|
|
mlir::cast<fir::RecordType>(bindingTy.getType(procCompName));
|
|
mlir::Type procRefTy = fir::ReferenceType::get(procTy);
|
|
mlir::Value procRef = fir::CoordinateOp::create(rewriter, loc, procRefTy,
|
|
bindingAddr, procField);
|
|
|
|
auto addressFieldName = Fortran::lower::builtin::cptrFieldName;
|
|
mlir::Value addressField = fir::FieldIndexOp::create(
|
|
rewriter, loc, fieldTy, addressFieldName, procTy, mlir::ValueRange{});
|
|
mlir::Type addressTy = procTy.getType(addressFieldName);
|
|
mlir::Type addressRefTy = fir::ReferenceType::get(addressTy);
|
|
mlir::Value addressRef = fir::CoordinateOp::create(
|
|
rewriter, loc, addressRefTy, procRef, addressField);
|
|
mlir::Value address = fir::LoadOp::create(rewriter, loc, addressRef);
|
|
|
|
// Get the function type.
|
|
llvm::SmallVector<mlir::Type> argTypes;
|
|
for (mlir::Value operand : dispatch.getArgs())
|
|
argTypes.push_back(operand.getType());
|
|
llvm::SmallVector<mlir::Type> resTypes;
|
|
if (!dispatch.getResults().empty())
|
|
resTypes.push_back(dispatch.getResults()[0].getType());
|
|
|
|
mlir::Type funTy =
|
|
mlir::FunctionType::get(rewriter.getContext(), argTypes, resTypes);
|
|
mlir::Value funcPtr = fir::ConvertOp::create(rewriter, loc, funTy, address);
|
|
|
|
// Make the call.
|
|
llvm::SmallVector<mlir::Value> args{funcPtr};
|
|
args.append(dispatch.getArgs().begin(), dispatch.getArgs().end());
|
|
rewriter.replaceOpWithNewOp<fir::CallOp>(
|
|
dispatch, resTypes, nullptr, args, dispatch.getArgAttrsAttr(),
|
|
dispatch.getResAttrsAttr(), dispatch.getProcedureAttrsAttr());
|
|
return mlir::success();
|
|
}
|
|
|
|
private:
|
|
BindingTables bindingTables;
|
|
std::optional<mlir::Type> typeDescriptorType;
|
|
};
|
|
|
|
/// Convert FIR structured control flow ops to CFG ops.
|
|
class PolymorphicOpConversion
|
|
: public fir::impl::PolymorphicOpConversionBase<PolymorphicOpConversion> {
|
|
public:
|
|
llvm::LogicalResult initialize(mlir::MLIRContext *ctx) override {
|
|
return mlir::success();
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto *context = &getContext();
|
|
mlir::ModuleOp mod = getOperation();
|
|
mlir::RewritePatternSet patterns(context);
|
|
|
|
BindingTables bindingTables;
|
|
std::optional<mlir::Type> typeDescriptorType =
|
|
buildBindingTables(bindingTables, mod);
|
|
|
|
patterns.insert<SelectTypeConv>(context);
|
|
patterns.insert<DispatchOpConv>(context, bindingTables, typeDescriptorType);
|
|
mlir::ConversionTarget target(*context);
|
|
target.addLegalDialect<mlir::affine::AffineDialect,
|
|
mlir::cf::ControlFlowDialect, FIROpsDialect,
|
|
mlir::func::FuncDialect>();
|
|
|
|
// apply the patterns
|
|
target.addIllegalOp<SelectTypeOp>();
|
|
target.addIllegalOp<DispatchOp>();
|
|
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
|
|
if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
|
|
std::move(patterns)))) {
|
|
mlir::emitError(mlir::UnknownLoc::get(context),
|
|
"error in converting to CFG\n");
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
llvm::LogicalResult SelectTypeConv::matchAndRewrite(
|
|
fir::SelectTypeOp selectType, OpAdaptor adaptor,
|
|
mlir::ConversionPatternRewriter &rewriter) const {
|
|
auto operands = adaptor.getOperands();
|
|
auto typeGuards = selectType.getCases();
|
|
unsigned typeGuardNum = typeGuards.size();
|
|
auto selector = selectType.getSelector();
|
|
auto loc = selectType.getLoc();
|
|
auto mod = selectType.getOperation()->getParentOfType<mlir::ModuleOp>();
|
|
fir::KindMapping kindMap = fir::getKindMapping(mod);
|
|
|
|
// Order type guards so the condition and branches are done to respect the
|
|
// Execution of SELECT TYPE construct as described in the Fortran 2018
|
|
// standard 11.1.11.2 point 4.
|
|
// 1. If a TYPE IS type guard statement matches the selector, the block
|
|
// following that statement is executed.
|
|
// 2. Otherwise, if exactly one CLASS IS type guard statement matches the
|
|
// selector, the block following that statement is executed.
|
|
// 3. Otherwise, if several CLASS IS type guard statements match the
|
|
// selector, one of these statements will inevitably specify a type that
|
|
// is an extension of all the types specified in the others; the block
|
|
// following that statement is executed.
|
|
// 4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block
|
|
// following that statement is executed.
|
|
// 5. Otherwise, no block is executed.
|
|
|
|
llvm::SmallVector<unsigned> orderedTypeGuards;
|
|
llvm::SmallVector<unsigned> orderedClassIsGuards;
|
|
unsigned defaultGuard = typeGuardNum - 1;
|
|
|
|
// The following loop go through the type guards in the fir.select_type
|
|
// operation and sort them into two lists.
|
|
// - All the TYPE IS type guard are added in order to the orderedTypeGuards
|
|
// list. This list is used at the end to generate the if-then-else ladder.
|
|
// - CLASS IS type guard are added in a separate list. If a CLASS IS type
|
|
// guard type extends a type already present, the type guard is inserted
|
|
// before in the list to respect point 3. above. Otherwise it is just
|
|
// added in order at the end.
|
|
for (unsigned t = 0; t < typeGuardNum; ++t) {
|
|
if (auto a = mlir::dyn_cast<fir::ExactTypeAttr>(typeGuards[t])) {
|
|
orderedTypeGuards.push_back(t);
|
|
continue;
|
|
}
|
|
|
|
if (auto a = mlir::dyn_cast<fir::SubclassAttr>(typeGuards[t])) {
|
|
if (auto recTy = mlir::dyn_cast<fir::RecordType>(a.getType())) {
|
|
auto dt = mod.lookupSymbol<fir::TypeInfoOp>(recTy.getName());
|
|
assert(dt && "dispatch table not found");
|
|
llvm::SmallSet<llvm::StringRef, 4> ancestors =
|
|
collectAncestors(dt, mod);
|
|
if (!ancestors.empty()) {
|
|
auto it = orderedClassIsGuards.begin();
|
|
while (it != orderedClassIsGuards.end()) {
|
|
fir::SubclassAttr sAttr =
|
|
mlir::dyn_cast<fir::SubclassAttr>(typeGuards[*it]);
|
|
if (auto ty = mlir::dyn_cast<fir::RecordType>(sAttr.getType())) {
|
|
if (ancestors.contains(ty.getName()))
|
|
break;
|
|
}
|
|
++it;
|
|
}
|
|
if (it != orderedClassIsGuards.end()) {
|
|
// Parent type is present so place it before.
|
|
orderedClassIsGuards.insert(it, t);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
orderedClassIsGuards.push_back(t);
|
|
}
|
|
}
|
|
orderedTypeGuards.append(orderedClassIsGuards);
|
|
orderedTypeGuards.push_back(defaultGuard);
|
|
assert(orderedTypeGuards.size() == typeGuardNum &&
|
|
"ordered type guard size doesn't match number of type guards");
|
|
|
|
for (unsigned idx : orderedTypeGuards) {
|
|
auto *dest = selectType.getSuccessor(idx);
|
|
std::optional<mlir::ValueRange> destOps =
|
|
selectType.getSuccessorOperands(operands, idx);
|
|
if (mlir::dyn_cast<mlir::UnitAttr>(typeGuards[idx]))
|
|
rewriter.replaceOpWithNewOp<mlir::cf::BranchOp>(
|
|
selectType, dest, destOps.value_or(mlir::ValueRange{}));
|
|
else if (mlir::failed(genTypeLadderStep(loc, selector, typeGuards[idx],
|
|
dest, destOps, mod, rewriter,
|
|
kindMap)))
|
|
return mlir::failure();
|
|
}
|
|
return mlir::success();
|
|
}
|
|
|
|
llvm::LogicalResult SelectTypeConv::genTypeLadderStep(
|
|
mlir::Location loc, mlir::Value selector, mlir::Attribute attr,
|
|
mlir::Block *dest, std::optional<mlir::ValueRange> destOps,
|
|
mlir::ModuleOp mod, mlir::PatternRewriter &rewriter,
|
|
fir::KindMapping &kindMap) const {
|
|
mlir::Value cmp;
|
|
// TYPE IS type guard comparison are all done inlined.
|
|
if (auto a = mlir::dyn_cast<fir::ExactTypeAttr>(attr)) {
|
|
if (fir::isa_trivial(a.getType()) ||
|
|
mlir::isa<fir::CharacterType>(a.getType())) {
|
|
// For type guard statement with Intrinsic type spec the type code of
|
|
// the descriptor is compared.
|
|
int code = fir::getTypeCode(a.getType(), kindMap);
|
|
if (code == 0)
|
|
return mlir::emitError(loc)
|
|
<< "type code unavailable for " << a.getType();
|
|
mlir::Value typeCode = mlir::arith::ConstantOp::create(
|
|
rewriter, loc, rewriter.getI8IntegerAttr(code));
|
|
mlir::Value selectorTypeCode = fir::BoxTypeCodeOp::create(
|
|
rewriter, loc, rewriter.getI8Type(), selector);
|
|
cmp = mlir::arith::CmpIOp::create(rewriter, loc,
|
|
mlir::arith::CmpIPredicate::eq,
|
|
selectorTypeCode, typeCode);
|
|
} else {
|
|
// Flang inline the kind parameter in the type descriptor so we can
|
|
// directly check if the type descriptor addresses are identical for
|
|
// the TYPE IS type guard statement.
|
|
mlir::Value res =
|
|
genTypeDescCompare(loc, selector, a.getType(), mod, rewriter);
|
|
if (!res)
|
|
return mlir::failure();
|
|
cmp = res;
|
|
}
|
|
// CLASS IS type guard statement is done with a runtime call.
|
|
} else if (auto a = mlir::dyn_cast<fir::SubclassAttr>(attr)) {
|
|
// Retrieve the type descriptor from the type guard statement record type.
|
|
assert(mlir::isa<fir::RecordType>(a.getType()) && "expect fir.record type");
|
|
mlir::Value typeDescAddr = fir::TypeDescOp::create(
|
|
rewriter, loc, mlir::TypeAttr::get(a.getType()));
|
|
mlir::Type refNoneType = ReferenceType::get(rewriter.getNoneType());
|
|
mlir::Value typeDesc =
|
|
ConvertOp::create(rewriter, loc, refNoneType, typeDescAddr);
|
|
|
|
// Prepare the selector descriptor for the runtime call.
|
|
mlir::Type descNoneTy = fir::BoxType::get(rewriter.getNoneType());
|
|
mlir::Value descSelector =
|
|
ConvertOp::create(rewriter, loc, descNoneTy, selector);
|
|
|
|
// Generate runtime call.
|
|
llvm::StringRef fctName = RTNAME_STRING(ClassIs);
|
|
mlir::func::FuncOp callee;
|
|
{
|
|
// Since conversion is done in parallel for each fir.select_type
|
|
// operation, the runtime function insertion must be threadsafe.
|
|
auto runtimeAttr =
|
|
mlir::NamedAttribute(fir::FIROpsDialect::getFirRuntimeAttrName(),
|
|
mlir::UnitAttr::get(rewriter.getContext()));
|
|
callee =
|
|
fir::createFuncOp(rewriter.getUnknownLoc(), mod, fctName,
|
|
rewriter.getFunctionType({descNoneTy, refNoneType},
|
|
rewriter.getI1Type()),
|
|
{runtimeAttr});
|
|
}
|
|
cmp = fir::CallOp::create(rewriter, loc, callee,
|
|
mlir::ValueRange{descSelector, typeDesc})
|
|
.getResult(0);
|
|
}
|
|
|
|
auto *thisBlock = rewriter.getInsertionBlock();
|
|
auto *newBlock =
|
|
rewriter.createBlock(dest->getParent(), mlir::Region::iterator(dest));
|
|
rewriter.setInsertionPointToEnd(thisBlock);
|
|
if (destOps.has_value())
|
|
mlir::cf::CondBranchOp::create(rewriter, loc, cmp, dest, destOps.value(),
|
|
newBlock, mlir::ValueRange{});
|
|
else
|
|
mlir::cf::CondBranchOp::create(rewriter, loc, cmp, dest, newBlock);
|
|
rewriter.setInsertionPointToEnd(newBlock);
|
|
return mlir::success();
|
|
}
|
|
|
|
// Generate comparison of type descriptor addresses.
|
|
mlir::Value
|
|
SelectTypeConv::genTypeDescCompare(mlir::Location loc, mlir::Value selector,
|
|
mlir::Type ty, mlir::ModuleOp mod,
|
|
mlir::PatternRewriter &rewriter) const {
|
|
assert(mlir::isa<fir::RecordType>(ty) && "expect fir.record type");
|
|
mlir::Value typeDescAddr =
|
|
fir::TypeDescOp::create(rewriter, loc, mlir::TypeAttr::get(ty));
|
|
mlir::Value selectorTdescAddr = fir::BoxTypeDescOp::create(
|
|
rewriter, loc, typeDescAddr.getType(), selector);
|
|
auto intPtrTy = rewriter.getIndexType();
|
|
auto typeDescInt =
|
|
fir::ConvertOp::create(rewriter, loc, intPtrTy, typeDescAddr);
|
|
auto selectorTdescInt =
|
|
fir::ConvertOp::create(rewriter, loc, intPtrTy, selectorTdescAddr);
|
|
return mlir::arith::CmpIOp::create(rewriter, loc,
|
|
mlir::arith::CmpIPredicate::eq,
|
|
typeDescInt, selectorTdescInt);
|
|
}
|
|
|
|
llvm::SmallSet<llvm::StringRef, 4>
|
|
SelectTypeConv::collectAncestors(fir::TypeInfoOp dt, mlir::ModuleOp mod) const {
|
|
llvm::SmallSet<llvm::StringRef, 4> ancestors;
|
|
while (auto parentName = dt.getIfParentName()) {
|
|
ancestors.insert(*parentName);
|
|
dt = mod.lookupSymbol<fir::TypeInfoOp>(*parentName);
|
|
assert(dt && "parent type info not generated");
|
|
}
|
|
return ancestors;
|
|
}
|