
In most cases, the type information attached to load and store instructions is meaningless and inconsistently applied. We can usually use ".b" loads and avoid the complexity of trying to assign the correct type. The one expectation is sign-extending load, which will continue to use ".s" to ensure the sign extension into a larger register is done correctly.
177 lines
5.9 KiB
LLVM
177 lines
5.9 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py UTC_ARGS: --version 5
|
|
; RUN: llc < %s -mtriple=nvptx64 -mcpu=sm_20 -verify-machineinstrs | FileCheck %s
|
|
; RUN: %if ptxas %{ llc < %s -mtriple=nvptx64 -mcpu=sm_20 -verify-machineinstrs | %ptxas-verify %}
|
|
|
|
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
|
|
|
|
declare i16 @llvm.ctlz.i16(i16, i1) readnone
|
|
declare i32 @llvm.ctlz.i32(i32, i1) readnone
|
|
declare i64 @llvm.ctlz.i64(i64, i1) readnone
|
|
|
|
; There should be no difference between llvm.ctlz.i32(%a, true) and
|
|
; llvm.ctlz.i32(%a, false), as ptx's clz(0) is defined to return 0.
|
|
|
|
define i32 @myctlz(i32 %a) {
|
|
; CHECK-LABEL: myctlz(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<3>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b32 %r1, [myctlz_param_0];
|
|
; CHECK-NEXT: clz.b32 %r2, %r1;
|
|
; CHECK-NEXT: st.param.b32 [func_retval0], %r2;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i32 @llvm.ctlz.i32(i32 %a, i1 false) readnone
|
|
ret i32 %val
|
|
}
|
|
define i32 @myctlz_2(i32 %a) {
|
|
; CHECK-LABEL: myctlz_2(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<3>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b32 %r1, [myctlz_2_param_0];
|
|
; CHECK-NEXT: clz.b32 %r2, %r1;
|
|
; CHECK-NEXT: st.param.b32 [func_retval0], %r2;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i32 @llvm.ctlz.i32(i32 %a, i1 true) readnone
|
|
ret i32 %val
|
|
}
|
|
|
|
; PTX's clz.b64 returns a 32-bit value, but LLVM's intrinsic returns a 64-bit
|
|
; value, so here we have to zero-extend it.
|
|
define i64 @myctlz64(i64 %a) {
|
|
; CHECK-LABEL: myctlz64(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<2>;
|
|
; CHECK-NEXT: .reg .b64 %rd<3>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b64 %rd1, [myctlz64_param_0];
|
|
; CHECK-NEXT: clz.b64 %r1, %rd1;
|
|
; CHECK-NEXT: cvt.u64.u32 %rd2, %r1;
|
|
; CHECK-NEXT: st.param.b64 [func_retval0], %rd2;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone
|
|
ret i64 %val
|
|
}
|
|
define i64 @myctlz64_2(i64 %a) {
|
|
; CHECK-LABEL: myctlz64_2(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<2>;
|
|
; CHECK-NEXT: .reg .b64 %rd<3>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b64 %rd1, [myctlz64_2_param_0];
|
|
; CHECK-NEXT: clz.b64 %r1, %rd1;
|
|
; CHECK-NEXT: cvt.u64.u32 %rd2, %r1;
|
|
; CHECK-NEXT: st.param.b64 [func_retval0], %rd2;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i64 @llvm.ctlz.i64(i64 %a, i1 true) readnone
|
|
ret i64 %val
|
|
}
|
|
|
|
; Here we truncate the 64-bit value of LLVM's ctlz intrinsic to 32 bits, the
|
|
; natural return width of ptx's clz.b64 instruction. No conversions should be
|
|
; necessary in the PTX.
|
|
define i32 @myctlz64_as_32(i64 %a) {
|
|
; CHECK-LABEL: myctlz64_as_32(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<2>;
|
|
; CHECK-NEXT: .reg .b64 %rd<2>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b64 %rd1, [myctlz64_as_32_param_0];
|
|
; CHECK-NEXT: clz.b64 %r1, %rd1;
|
|
; CHECK-NEXT: st.param.b32 [func_retval0], %r1;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone
|
|
%trunc = trunc i64 %val to i32
|
|
ret i32 %trunc
|
|
}
|
|
define i32 @myctlz64_as_32_2(i64 %a) {
|
|
; CHECK-LABEL: myctlz64_as_32_2(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<2>;
|
|
; CHECK-NEXT: .reg .b64 %rd<2>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b64 %rd1, [myctlz64_as_32_2_param_0];
|
|
; CHECK-NEXT: clz.b64 %r1, %rd1;
|
|
; CHECK-NEXT: st.param.b32 [func_retval0], %r1;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone
|
|
%trunc = trunc i64 %val to i32
|
|
ret i32 %trunc
|
|
}
|
|
|
|
; ctlz.i16 is implemented by extending the input to i32, computing the result,
|
|
; and then truncating the result back down to i16. But the NVPTX ABI
|
|
; zero-extends i16 return values to i32, so the final truncation doesn't appear
|
|
; in this function.
|
|
define i16 @myctlz_ret16(i16 %a) {
|
|
; CHECK-LABEL: myctlz_ret16(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<4>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b16 %r1, [myctlz_ret16_param_0];
|
|
; CHECK-NEXT: clz.b32 %r2, %r1;
|
|
; CHECK-NEXT: add.s32 %r3, %r2, -16;
|
|
; CHECK-NEXT: st.param.b32 [func_retval0], %r3;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone
|
|
ret i16 %val
|
|
}
|
|
define i16 @myctlz_ret16_2(i16 %a) {
|
|
; CHECK-LABEL: myctlz_ret16_2(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<4>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b16 %r1, [myctlz_ret16_2_param_0];
|
|
; CHECK-NEXT: shl.b32 %r2, %r1, 16;
|
|
; CHECK-NEXT: clz.b32 %r3, %r2;
|
|
; CHECK-NEXT: st.param.b32 [func_retval0], %r3;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i16 @llvm.ctlz.i16(i16 %a, i1 true) readnone
|
|
ret i16 %val
|
|
}
|
|
|
|
; Here we store the result of ctlz.16 into an i16 pointer, so the trunc should
|
|
; remain.
|
|
define void @myctlz_store16(i16 %a, ptr %b) {
|
|
; CHECK-LABEL: myctlz_store16(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<4>;
|
|
; CHECK-NEXT: .reg .b64 %rd<2>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b16 %r1, [myctlz_store16_param_0];
|
|
; CHECK-NEXT: clz.b32 %r2, %r1;
|
|
; CHECK-NEXT: add.s32 %r3, %r2, -16;
|
|
; CHECK-NEXT: ld.param.b64 %rd1, [myctlz_store16_param_1];
|
|
; CHECK-NEXT: st.b16 [%rd1], %r3;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone
|
|
store i16 %val, ptr %b
|
|
ret void
|
|
}
|
|
define void @myctlz_store16_2(i16 %a, ptr %b) {
|
|
; CHECK-LABEL: myctlz_store16_2(
|
|
; CHECK: {
|
|
; CHECK-NEXT: .reg .b32 %r<4>;
|
|
; CHECK-NEXT: .reg .b64 %rd<2>;
|
|
; CHECK-EMPTY:
|
|
; CHECK-NEXT: // %bb.0:
|
|
; CHECK-NEXT: ld.param.b16 %r1, [myctlz_store16_2_param_0];
|
|
; CHECK-NEXT: clz.b32 %r2, %r1;
|
|
; CHECK-NEXT: add.s32 %r3, %r2, -16;
|
|
; CHECK-NEXT: ld.param.b64 %rd1, [myctlz_store16_2_param_1];
|
|
; CHECK-NEXT: st.b16 [%rd1], %r3;
|
|
; CHECK-NEXT: ret;
|
|
%val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone
|
|
store i16 %val, ptr %b
|
|
ret void
|
|
}
|