288 lines
11 KiB
C++

//===- MemRefUtils.cpp - Utilities to support the MemRef dialect ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the MemRef dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
#include "llvm/ADT/STLExtras.h"
namespace mlir {
namespace memref {
bool isStaticShapeAndContiguousRowMajor(MemRefType type) {
if (!type.hasStaticShape())
return false;
SmallVector<int64_t> strides;
int64_t offset;
if (failed(type.getStridesAndOffset(strides, offset)))
return false;
// MemRef is contiguous if outer dimensions are size-1 and inner
// dimensions have unit strides.
int64_t runningStride = 1;
int64_t curDim = strides.size() - 1;
// Finds all inner dimensions with unit strides.
while (curDim >= 0 && strides[curDim] == runningStride) {
runningStride *= type.getDimSize(curDim);
--curDim;
}
// Check if other dimensions are size-1.
while (curDim >= 0 && type.getDimSize(curDim) == 1) {
--curDim;
}
// All dims are unit-strided or size-1.
return curDim < 0;
}
std::pair<LinearizedMemRefInfo, OpFoldResult> getLinearizedMemRefOffsetAndSize(
OpBuilder &builder, Location loc, int srcBits, int dstBits,
OpFoldResult offset, ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides, ArrayRef<OpFoldResult> indices) {
unsigned sourceRank = sizes.size();
assert(sizes.size() == strides.size() &&
"expected as many sizes as strides for a memref");
SmallVector<OpFoldResult> indicesVec = llvm::to_vector(indices);
if (indices.empty())
indicesVec.resize(sourceRank, builder.getIndexAttr(0));
assert(indicesVec.size() == strides.size() &&
"expected as many indices as rank of memref");
// Create the affine symbols and values for linearization.
SmallVector<AffineExpr> symbols(2 * sourceRank);
bindSymbolsList(builder.getContext(), MutableArrayRef{symbols});
AffineExpr addMulMap = builder.getAffineConstantExpr(0);
SmallVector<OpFoldResult> offsetValues(2 * sourceRank);
for (unsigned i = 0; i < sourceRank; ++i) {
unsigned offsetIdx = 2 * i;
addMulMap = addMulMap + symbols[offsetIdx] * symbols[offsetIdx + 1];
offsetValues[offsetIdx] = indicesVec[i];
offsetValues[offsetIdx + 1] = strides[i];
}
// Adjust linearizedIndices and size by the scale factor (dstBits / srcBits).
int64_t scaler = dstBits / srcBits;
OpFoldResult linearizedIndices = affine::makeComposedFoldedAffineApply(
builder, loc, addMulMap.floorDiv(scaler), offsetValues);
size_t symbolIndex = 0;
SmallVector<OpFoldResult> values;
SmallVector<AffineExpr> productExpressions;
for (unsigned i = 0; i < sourceRank; ++i) {
AffineExpr strideExpr = symbols[symbolIndex++];
values.push_back(strides[i]);
AffineExpr sizeExpr = symbols[symbolIndex++];
values.push_back(sizes[i]);
productExpressions.push_back((strideExpr * sizeExpr).floorDiv(scaler));
}
AffineMap maxMap = AffineMap::get(
/*dimCount=*/0, /*symbolCount=*/symbolIndex, productExpressions,
builder.getContext());
OpFoldResult linearizedSize =
affine::makeComposedFoldedAffineMax(builder, loc, maxMap, values);
// Adjust baseOffset by the scale factor (dstBits / srcBits).
AffineExpr s0;
bindSymbols(builder.getContext(), s0);
OpFoldResult adjustBaseOffset = affine::makeComposedFoldedAffineApply(
builder, loc, s0.floorDiv(scaler), {offset});
OpFoldResult intraVectorOffset = affine::makeComposedFoldedAffineApply(
builder, loc, addMulMap % scaler, offsetValues);
return {{adjustBaseOffset, linearizedSize, intraVectorOffset},
linearizedIndices};
}
LinearizedMemRefInfo
getLinearizedMemRefOffsetAndSize(OpBuilder &builder, Location loc, int srcBits,
int dstBits, OpFoldResult offset,
ArrayRef<OpFoldResult> sizes) {
SmallVector<OpFoldResult> strides(sizes.size());
if (!sizes.empty()) {
strides.back() = builder.getIndexAttr(1);
AffineExpr s0, s1;
bindSymbols(builder.getContext(), s0, s1);
for (int index = sizes.size() - 1; index > 0; --index) {
strides[index - 1] = affine::makeComposedFoldedAffineApply(
builder, loc, s0 * s1,
ArrayRef<OpFoldResult>{strides[index], sizes[index]});
}
}
LinearizedMemRefInfo linearizedMemRefInfo;
std::tie(linearizedMemRefInfo, std::ignore) =
getLinearizedMemRefOffsetAndSize(builder, loc, srcBits, dstBits, offset,
sizes, strides);
return linearizedMemRefInfo;
}
/// Returns true if all the uses of op are not read/load.
/// There can be SubviewOp users as long as all its users are also
/// StoreOp/transfer_write. If return true it also fills out the uses, if it
/// returns false uses is unchanged.
static bool resultIsNotRead(Operation *op, std::vector<Operation *> &uses) {
std::vector<Operation *> opUses;
for (OpOperand &use : op->getUses()) {
Operation *useOp = use.getOwner();
if (isa<memref::DeallocOp>(useOp) ||
(useOp->getNumResults() == 0 && useOp->getNumRegions() == 0 &&
!mlir::hasEffect<MemoryEffects::Read>(useOp)) ||
(isa<memref::SubViewOp>(useOp) && resultIsNotRead(useOp, opUses))) {
opUses.push_back(useOp);
continue;
}
return false;
}
llvm::append_range(uses, opUses);
return true;
}
void eraseDeadAllocAndStores(RewriterBase &rewriter, Operation *parentOp) {
std::vector<Operation *> opToErase;
parentOp->walk([&](Operation *op) {
std::vector<Operation *> candidates;
if (isa<memref::AllocOp, memref::AllocaOp>(op) &&
resultIsNotRead(op, candidates)) {
llvm::append_range(opToErase, candidates);
opToErase.push_back(op);
}
});
for (Operation *op : opToErase)
rewriter.eraseOp(op);
}
static SmallVector<OpFoldResult>
computeSuffixProductIRBlockImpl(Location loc, OpBuilder &builder,
ArrayRef<OpFoldResult> sizes,
OpFoldResult unit) {
SmallVector<OpFoldResult> strides(sizes.size(), unit);
AffineExpr s0, s1;
bindSymbols(builder.getContext(), s0, s1);
for (int64_t r = strides.size() - 1; r > 0; --r) {
strides[r - 1] = affine::makeComposedFoldedAffineApply(
builder, loc, s0 * s1, {strides[r], sizes[r]});
}
return strides;
}
SmallVector<OpFoldResult>
computeSuffixProductIRBlock(Location loc, OpBuilder &builder,
ArrayRef<OpFoldResult> sizes) {
OpFoldResult unit = builder.getIndexAttr(1);
return computeSuffixProductIRBlockImpl(loc, builder, sizes, unit);
}
MemrefValue skipFullyAliasingOperations(MemrefValue source) {
while (auto op = source.getDefiningOp()) {
if (auto subViewOp = dyn_cast<memref::SubViewOp>(op);
subViewOp && subViewOp.hasZeroOffset() && subViewOp.hasUnitStride()) {
// A `memref.subview` with an all zero offset, and all unit strides, still
// points to the same memory.
source = cast<MemrefValue>(subViewOp.getSource());
} else if (auto castOp = dyn_cast<memref::CastOp>(op)) {
// A `memref.cast` still points to the same memory.
source = castOp.getSource();
} else {
return source;
}
}
return source;
}
MemrefValue skipViewLikeOps(MemrefValue source) {
while (auto op = source.getDefiningOp()) {
if (auto viewLike = dyn_cast<ViewLikeOpInterface>(op)) {
source = cast<MemrefValue>(viewLike.getViewSource());
continue;
}
return source;
}
return source;
}
LogicalResult resolveSourceIndicesExpandShape(
Location loc, PatternRewriter &rewriter,
memref::ExpandShapeOp expandShapeOp, ValueRange indices,
SmallVectorImpl<Value> &sourceIndices, bool startsInbounds) {
SmallVector<OpFoldResult> destShape = expandShapeOp.getMixedOutputShape();
// Traverse all reassociation groups to determine the appropriate indices
// corresponding to each one of them post op folding.
for (ArrayRef<int64_t> group : expandShapeOp.getReassociationIndices()) {
assert(!group.empty() && "association indices groups cannot be empty");
int64_t groupSize = group.size();
if (groupSize == 1) {
sourceIndices.push_back(indices[group[0]]);
continue;
}
SmallVector<OpFoldResult> groupBasis =
llvm::map_to_vector(group, [&](int64_t d) { return destShape[d]; });
SmallVector<Value> groupIndices =
llvm::map_to_vector(group, [&](int64_t d) { return indices[d]; });
Value collapsedIndex = affine::AffineLinearizeIndexOp::create(
rewriter, loc, groupIndices, groupBasis, /*disjoint=*/startsInbounds);
sourceIndices.push_back(collapsedIndex);
}
return success();
}
LogicalResult
resolveSourceIndicesCollapseShape(Location loc, PatternRewriter &rewriter,
memref::CollapseShapeOp collapseShapeOp,
ValueRange indices,
SmallVectorImpl<Value> &sourceIndices) {
// Note: collapse_shape requires a strided memref, we can do this.
auto metadata = memref::ExtractStridedMetadataOp::create(
rewriter, loc, collapseShapeOp.getSrc());
SmallVector<OpFoldResult> sourceSizes = metadata.getConstifiedMixedSizes();
for (auto [index, group] :
llvm::zip(indices, collapseShapeOp.getReassociationIndices())) {
assert(!group.empty() && "association indices groups cannot be empty");
int64_t groupSize = group.size();
if (groupSize == 1) {
sourceIndices.push_back(index);
continue;
}
SmallVector<OpFoldResult> basis =
llvm::map_to_vector(group, [&](int64_t d) { return sourceSizes[d]; });
auto delinearize = affine::AffineDelinearizeIndexOp::create(
rewriter, loc, index, basis, /*hasOuterBound=*/true);
llvm::append_range(sourceIndices, delinearize.getResults());
}
if (collapseShapeOp.getReassociationIndices().empty()) {
auto zeroAffineMap = rewriter.getConstantAffineMap(0);
int64_t srcRank =
cast<MemRefType>(collapseShapeOp.getViewSource().getType()).getRank();
OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
rewriter, loc, zeroAffineMap, ArrayRef<OpFoldResult>{});
for (int64_t i = 0; i < srcRank; i++) {
sourceIndices.push_back(
getValueOrCreateConstantIndexOp(rewriter, loc, ofr));
}
}
return success();
}
} // namespace memref
} // namespace mlir