llvm-project/llvm/lib/Target/RISCV/RISCVCodeGenPrepare.cpp
Luke Lau 185ba025da
[RISCV] Widen i1 AnyOf reductions (#134898)
With EVL tail folding an AnyOf reduction will end up emitting an i1
vp.merge.

Unfortunately due to RVV not containing any tail undisturbed mask
instructions, an i1 vp.merge will get expanded to a lengthy sequence:

```asm
  vsetvli a1, zero, e64, m1, ta, ma
  vid.v v10                        
  vmsltu.vx v10, v10, a0           
  vmand.mm v9, v9, v10             
  vmandn.mm v8, v8, v9             
  vmand.mm v9, v0, v9              
  vmor.mm v0, v9, v8               
```

This addresses this by matching this specific AnyOf pattern in
RISCVCodegenPrepare and widening it from i1 to i8, which will end up
producing a single masked i8 vor.vi inside the loop:

```llvm
loop:                                                                      
  %phi = phi <vscale x 4 x i1> [ zeroinitializer, %entry ], [ %rec, %loop ]
  %cmp = icmp ...                                                                                          
  %rec = call <vscale x 4 x i1> @llvm.vp.merge(%cmp, true, %phi, %evl)     
```

```llvm
loop:                                                                      
  %phi = phi <vscale x 4 x i8> [ zeroinitializer, %entry ], [ %rec, %loop ]
  %cmp = icmp ...                             
  %rec = call <vscale x 4 x i8> @llvm.vp.merge(%cmp, true, %phi, %evl)     
  %trunc = trunc <vscale x 4 x i8> %rec to <vscale x 4 x i1>               
```

I ended up adding this in RISCVCodegenPrepare instead of the
LoopVectorizer itself since it would have required adding a target hook.

It may also be possible to generalize this to other i1 vp.merges in
future.

Normally the trunc will be sunk outside of the loop. But it also doesn't
check to see if all the non-phi users of the vp.merge are outside of the
loop: If there are in-loop users this still seems to be profitable, see
the test diff in `@widen_anyof_rdx_use_in_loop`

Fixes #132180
2025-04-28 10:07:51 +08:00

304 lines
9.9 KiB
C++

//===----- RISCVCodeGenPrepare.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a RISC-V specific version of CodeGenPrepare.
// It munges the code in the input function to better prepare it for
// SelectionDAG-based code generation. This works around limitations in it's
// basic-block-at-a-time approach.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "RISCVTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-codegenprepare"
#define PASS_NAME "RISC-V CodeGenPrepare"
namespace {
class RISCVCodeGenPrepare : public FunctionPass,
public InstVisitor<RISCVCodeGenPrepare, bool> {
const DataLayout *DL;
const DominatorTree *DT;
const RISCVSubtarget *ST;
public:
static char ID;
RISCVCodeGenPrepare() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return PASS_NAME; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetPassConfig>();
}
bool visitInstruction(Instruction &I) { return false; }
bool visitAnd(BinaryOperator &BO);
bool visitIntrinsicInst(IntrinsicInst &I);
bool expandVPStrideLoad(IntrinsicInst &I);
bool widenVPMerge(IntrinsicInst &I);
};
} // end anonymous namespace
// Try to optimize (i64 (and (zext/sext (i32 X), C1))) if C1 has bit 31 set,
// but bits 63:32 are zero. If we know that bit 31 of X is 0, we can fill
// the upper 32 bits with ones.
bool RISCVCodeGenPrepare::visitAnd(BinaryOperator &BO) {
if (!ST->is64Bit())
return false;
if (!BO.getType()->isIntegerTy(64))
return false;
using namespace PatternMatch;
// Left hand side should be a zext nneg.
Value *LHSSrc;
if (!match(BO.getOperand(0), m_NNegZExt(m_Value(LHSSrc))))
return false;
if (!LHSSrc->getType()->isIntegerTy(32))
return false;
// Right hand side should be a constant.
Value *RHS = BO.getOperand(1);
auto *CI = dyn_cast<ConstantInt>(RHS);
if (!CI)
return false;
uint64_t C = CI->getZExtValue();
// Look for constants that fit in 32 bits but not simm12, and can be made
// into simm12 by sign extending bit 31. This will allow use of ANDI.
// TODO: Is worth making simm32?
if (!isUInt<32>(C) || isInt<12>(C) || !isInt<12>(SignExtend64<32>(C)))
return false;
// Sign extend the constant and replace the And operand.
C = SignExtend64<32>(C);
BO.setOperand(1, ConstantInt::get(RHS->getType(), C));
return true;
}
// With EVL tail folding, an AnyOf reduction will generate an i1 vp.merge like
// follows:
//
// loop:
// %phi = phi <vscale x 4 x i1> [ zeroinitializer, %entry ], [ %rec, %loop ]
// %cmp = icmp ...
// %rec = call <vscale x 4 x i1> @llvm.vp.merge(%cmp, i1 true, %phi, %evl)
// ...
// middle:
// %res = call i1 @llvm.vector.reduce.or(<vscale x 4 x i1> %rec)
//
// However RVV doesn't have any tail undisturbed mask instructions and so we
// need a convoluted sequence of mask instructions to lower the i1 vp.merge: see
// llvm/test/CodeGen/RISCV/rvv/vpmerge-sdnode.ll.
//
// To avoid that this widens the i1 vp.merge to an i8 vp.merge, which will
// generate a single vmerge.vim:
//
// loop:
// %phi = phi <vscale x 4 x i8> [ zeroinitializer, %entry ], [ %rec, %loop ]
// %cmp = icmp ...
// %rec = call <vscale x 4 x i8> @llvm.vp.merge(%cmp, i8 true, %phi, %evl)
// %trunc = trunc <vscale x 4 x i8> %rec to <vscale x 4 x i1>
// ...
// middle:
// %res = call i1 @llvm.vector.reduce.or(<vscale x 4 x i1> %rec)
//
// The trunc will normally be sunk outside of the loop, but even if there are
// users inside the loop it is still profitable.
bool RISCVCodeGenPrepare::widenVPMerge(IntrinsicInst &II) {
if (!II.getType()->getScalarType()->isIntegerTy(1))
return false;
Value *Mask, *True, *PhiV, *EVL;
using namespace PatternMatch;
if (!match(&II,
m_Intrinsic<Intrinsic::vp_merge>(m_Value(Mask), m_Value(True),
m_Value(PhiV), m_Value(EVL))))
return false;
auto *Phi = dyn_cast<PHINode>(PhiV);
if (!Phi || !Phi->hasOneUse() || Phi->getNumIncomingValues() != 2 ||
!match(Phi->getIncomingValue(0), m_Zero()) ||
Phi->getIncomingValue(1) != &II)
return false;
Type *WideTy =
VectorType::get(IntegerType::getInt8Ty(II.getContext()),
cast<VectorType>(II.getType())->getElementCount());
IRBuilder<> Builder(Phi);
PHINode *WidePhi = Builder.CreatePHI(WideTy, 2);
WidePhi->addIncoming(ConstantAggregateZero::get(WideTy),
Phi->getIncomingBlock(0));
Builder.SetInsertPoint(&II);
Value *WideTrue = Builder.CreateZExt(True, WideTy);
Value *WideMerge = Builder.CreateIntrinsic(Intrinsic::vp_merge, {WideTy},
{Mask, WideTrue, WidePhi, EVL});
WidePhi->addIncoming(WideMerge, Phi->getIncomingBlock(1));
Value *Trunc = Builder.CreateTrunc(WideMerge, II.getType());
II.replaceAllUsesWith(Trunc);
// Break the cycle and delete the old chain.
Phi->setIncomingValue(1, Phi->getIncomingValue(0));
llvm::RecursivelyDeleteTriviallyDeadInstructions(&II);
return true;
}
// LLVM vector reduction intrinsics return a scalar result, but on RISC-V vector
// reduction instructions write the result in the first element of a vector
// register. So when a reduction in a loop uses a scalar phi, we end up with
// unnecessary scalar moves:
//
// loop:
// vfmv.s.f v10, fa0
// vfredosum.vs v8, v8, v10
// vfmv.f.s fa0, v8
//
// This mainly affects ordered fadd reductions and VP reductions that have a
// scalar start value, since other types of reduction typically use element-wise
// vectorisation in the loop body. This tries to vectorize any scalar phis that
// feed into these reductions:
//
// loop:
// %phi = phi <float> [ ..., %entry ], [ %acc, %loop ]
// %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %phi,
// <vscale x 2 x float> %vec)
//
// ->
//
// loop:
// %phi = phi <vscale x 2 x float> [ ..., %entry ], [ %acc.vec, %loop ]
// %phi.scalar = extractelement <vscale x 2 x float> %phi, i64 0
// %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %x,
// <vscale x 2 x float> %vec)
// %acc.vec = insertelement <vscale x 2 x float> poison, float %acc.next, i64 0
//
// Which eliminates the scalar -> vector -> scalar crossing during instruction
// selection.
bool RISCVCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
if (expandVPStrideLoad(I))
return true;
if (widenVPMerge(I))
return true;
if (I.getIntrinsicID() != Intrinsic::vector_reduce_fadd &&
!isa<VPReductionIntrinsic>(&I))
return false;
auto *PHI = dyn_cast<PHINode>(I.getOperand(0));
if (!PHI || !PHI->hasOneUse() ||
!llvm::is_contained(PHI->incoming_values(), &I))
return false;
Type *VecTy = I.getOperand(1)->getType();
IRBuilder<> Builder(PHI);
auto *VecPHI = Builder.CreatePHI(VecTy, PHI->getNumIncomingValues());
for (auto *BB : PHI->blocks()) {
Builder.SetInsertPoint(BB->getTerminator());
Value *InsertElt = Builder.CreateInsertElement(
VecTy, PHI->getIncomingValueForBlock(BB), (uint64_t)0);
VecPHI->addIncoming(InsertElt, BB);
}
Builder.SetInsertPoint(&I);
I.setOperand(0, Builder.CreateExtractElement(VecPHI, (uint64_t)0));
PHI->eraseFromParent();
return true;
}
// Always expand zero strided loads so we match more .vx splat patterns, even if
// we have +optimized-zero-stride-loads. RISCVDAGToDAGISel::Select will convert
// it back to a strided load if it's optimized.
bool RISCVCodeGenPrepare::expandVPStrideLoad(IntrinsicInst &II) {
Value *BasePtr, *VL;
using namespace PatternMatch;
if (!match(&II, m_Intrinsic<Intrinsic::experimental_vp_strided_load>(
m_Value(BasePtr), m_Zero(), m_AllOnes(), m_Value(VL))))
return false;
// If SEW>XLEN then a splat will get lowered as a zero strided load anyway, so
// avoid expanding here.
if (II.getType()->getScalarSizeInBits() > ST->getXLen())
return false;
if (!isKnownNonZero(VL, {*DL, DT, nullptr, &II}))
return false;
auto *VTy = cast<VectorType>(II.getType());
IRBuilder<> Builder(&II);
Type *STy = VTy->getElementType();
Value *Val = Builder.CreateLoad(STy, BasePtr);
Value *Res = Builder.CreateIntrinsic(Intrinsic::experimental_vp_splat, {VTy},
{Val, II.getOperand(2), VL});
II.replaceAllUsesWith(Res);
II.eraseFromParent();
return true;
}
bool RISCVCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<RISCVTargetMachine>();
ST = &TM.getSubtarget<RISCVSubtarget>(F);
DL = &F.getDataLayout();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
bool MadeChange = false;
for (auto &BB : F)
for (Instruction &I : llvm::make_early_inc_range(BB))
MadeChange |= visit(I);
return MadeChange;
}
INITIALIZE_PASS_BEGIN(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
char RISCVCodeGenPrepare::ID = 0;
FunctionPass *llvm::createRISCVCodeGenPreparePass() {
return new RISCVCodeGenPrepare();
}