
Each section now tracks the index of the first linker-relaxable fragment, enabling two changes: * Delete redundant ALIGN relocations before the first linker-relaxable instruction in a section. The primary example is the offset 0 R_RISCV_ALIGN relocation for a text section aligned by 4. * For alignments larger than the NOP size after the first linker-relaxable instruction, ALIGN relocations are now generated, even in norelax regions. This fixes the issue #150159. The new test llvm/test/MC/RISCV/Relocations/align-after-relax.s verifies the required ALIGN in a norelax region following linker-relaxable instructions. By using a fragment index within the subsection (which is less than or equal to the section's index), the implementation may generate redundant ALIGN relocations in lower-numbered subsections before the first linker-relaxable instruction. align-option-relax.s demonstrates the ALIGN optimization. Add an initial `call` to a few tests to prevent the ALIGN optimization. --- When the alignment exceeds 2, we insert $alignment-2 bytes of NOPs, even in non-RVC code. This enables non-RVC code following RVC code to handle a 2-byte adjustment without requiring an additional state in MCSection or AsmParser. ``` .globl _start _start: // GNU ld can relax this to 6505 lui a0, 0x1 // LLD hasn't implemented this transformation. lui a0, %hi(foo) .option push .option norelax .option norvc // Now we generate R_RISCV_ALIGN with addend 2, even if this is a norvc region. .balign 4 b0: .word 0x3a393837 .option pop foo: ``` Pull Request: https://github.com/llvm/llvm-project/pull/150816
929 lines
33 KiB
C++
929 lines
33 KiB
C++
//===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVAsmBackend.h"
|
|
#include "RISCVFixupKinds.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCELFObjectWriter.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/EndianStream.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// Temporary workaround for old linkers that do not support ULEB128 relocations,
|
|
// which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair
|
|
// implemented in Clang/LLVM.
|
|
static cl::opt<bool> ULEB128Reloc(
|
|
"riscv-uleb128-reloc", cl::init(true), cl::Hidden,
|
|
cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate"));
|
|
|
|
static cl::opt<bool>
|
|
AlignRvc("riscv-align-rvc", cl::init(true), cl::Hidden,
|
|
cl::desc("When generating R_RISCV_ALIGN, insert $alignment-2 "
|
|
"bytes of NOPs even in norvc code"));
|
|
|
|
RISCVAsmBackend::RISCVAsmBackend(const MCSubtargetInfo &STI, uint8_t OSABI,
|
|
bool Is64Bit, const MCTargetOptions &Options)
|
|
: MCAsmBackend(llvm::endianness::little), STI(STI), OSABI(OSABI),
|
|
Is64Bit(Is64Bit), TargetOptions(Options) {
|
|
RISCVFeatures::validate(STI.getTargetTriple(), STI.getFeatureBits());
|
|
}
|
|
|
|
std::optional<MCFixupKind> RISCVAsmBackend::getFixupKind(StringRef Name) const {
|
|
if (STI.getTargetTriple().isOSBinFormatELF()) {
|
|
unsigned Type;
|
|
Type = llvm::StringSwitch<unsigned>(Name)
|
|
#define ELF_RELOC(NAME, ID) .Case(#NAME, ID)
|
|
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
|
|
#undef ELF_RELOC
|
|
#define ELF_RISCV_NONSTANDARD_RELOC(_VENDOR, NAME, ID) .Case(#NAME, ID)
|
|
#include "llvm/BinaryFormat/ELFRelocs/RISCV_nonstandard.def"
|
|
#undef ELF_RISCV_NONSTANDARD_RELOC
|
|
.Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE)
|
|
.Case("BFD_RELOC_32", ELF::R_RISCV_32)
|
|
.Case("BFD_RELOC_64", ELF::R_RISCV_64)
|
|
.Default(-1u);
|
|
if (Type != -1u)
|
|
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
MCFixupKindInfo RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
|
|
const static MCFixupKindInfo Infos[] = {
|
|
// This table *must* be in the order that the fixup_* kinds are defined in
|
|
// RISCVFixupKinds.h.
|
|
//
|
|
// name offset bits flags
|
|
{"fixup_riscv_hi20", 12, 20, 0},
|
|
{"fixup_riscv_lo12_i", 20, 12, 0},
|
|
{"fixup_riscv_12_i", 20, 12, 0},
|
|
{"fixup_riscv_lo12_s", 0, 32, 0},
|
|
{"fixup_riscv_pcrel_hi20", 12, 20, 0},
|
|
{"fixup_riscv_pcrel_lo12_i", 20, 12, 0},
|
|
{"fixup_riscv_pcrel_lo12_s", 0, 32, 0},
|
|
{"fixup_riscv_jal", 12, 20, 0},
|
|
{"fixup_riscv_branch", 0, 32, 0},
|
|
{"fixup_riscv_rvc_jump", 2, 11, 0},
|
|
{"fixup_riscv_rvc_branch", 0, 16, 0},
|
|
{"fixup_riscv_rvc_imm", 0, 16, 0},
|
|
{"fixup_riscv_call", 0, 64, 0},
|
|
{"fixup_riscv_call_plt", 0, 64, 0},
|
|
|
|
{"fixup_riscv_qc_e_branch", 0, 48, 0},
|
|
{"fixup_riscv_qc_e_32", 16, 32, 0},
|
|
{"fixup_riscv_qc_abs20_u", 0, 32, 0},
|
|
{"fixup_riscv_qc_e_call_plt", 0, 48, 0},
|
|
|
|
// Andes fixups
|
|
{"fixup_riscv_nds_branch_10", 0, 32, 0},
|
|
};
|
|
static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds,
|
|
"Not all fixup kinds added to Infos array");
|
|
|
|
// Fixup kinds from raw relocation types and .reloc directives force
|
|
// relocations and do not use these fields.
|
|
if (mc::isRelocation(Kind))
|
|
return {};
|
|
|
|
if (Kind < FirstTargetFixupKind)
|
|
return MCAsmBackend::getFixupKindInfo(Kind);
|
|
|
|
assert(unsigned(Kind - FirstTargetFixupKind) < RISCV::NumTargetFixupKinds &&
|
|
"Invalid kind!");
|
|
return Infos[Kind - FirstTargetFixupKind];
|
|
}
|
|
|
|
bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFragment &,
|
|
const MCFixup &Fixup,
|
|
const MCValue &,
|
|
uint64_t Value,
|
|
bool Resolved) const {
|
|
int64_t Offset = int64_t(Value);
|
|
auto Kind = Fixup.getKind();
|
|
|
|
// Return true if the symbol is unresolved.
|
|
if (!Resolved)
|
|
return true;
|
|
|
|
switch (Kind) {
|
|
default:
|
|
return false;
|
|
case RISCV::fixup_riscv_rvc_branch:
|
|
// For compressed branch instructions the immediate must be
|
|
// in the range [-256, 254].
|
|
return Offset > 254 || Offset < -256;
|
|
case RISCV::fixup_riscv_rvc_jump:
|
|
// For compressed jump instructions the immediate must be
|
|
// in the range [-2048, 2046].
|
|
return Offset > 2046 || Offset < -2048;
|
|
case RISCV::fixup_riscv_branch:
|
|
case RISCV::fixup_riscv_qc_e_branch:
|
|
// For conditional branch instructions the immediate must be
|
|
// in the range [-4096, 4094].
|
|
return Offset > 4094 || Offset < -4096;
|
|
case RISCV::fixup_riscv_jal:
|
|
// For jump instructions the immediate must be in the range
|
|
// [-1048576, 1048574]
|
|
return Offset > 1048574 || Offset < -1048576;
|
|
case RISCV::fixup_riscv_rvc_imm:
|
|
// This fixup can never be emitted as a relocation, so always needs to be
|
|
// relaxed.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Given a compressed control flow instruction this function returns
|
|
// the expanded instruction, or the original instruction code if no
|
|
// expansion is available.
|
|
static unsigned getRelaxedOpcode(unsigned Opcode, ArrayRef<MCOperand> Operands,
|
|
const MCSubtargetInfo &STI) {
|
|
switch (Opcode) {
|
|
case RISCV::C_BEQZ:
|
|
return RISCV::BEQ;
|
|
case RISCV::C_BNEZ:
|
|
return RISCV::BNE;
|
|
case RISCV::C_J:
|
|
case RISCV::C_JAL: // fall through.
|
|
// This only relaxes one "step" - i.e. from C.J to JAL, not from C.J to
|
|
// QC.E.J, because we can always relax again if needed.
|
|
return RISCV::JAL;
|
|
case RISCV::C_LI:
|
|
if (!STI.hasFeature(RISCV::FeatureVendorXqcili))
|
|
break;
|
|
// We only need this because `QC.E.LI` can be compressed into a `C.LI`. This
|
|
// happens because the `simm6` MCOperandPredicate accepts bare symbols, and
|
|
// `QC.E.LI` is the only instruction that accepts bare symbols at parse-time
|
|
// and compresses to `C.LI`. `C.LI` does not itself accept bare symbols at
|
|
// parse time.
|
|
//
|
|
// If we have a bare symbol, we need to turn this back to a `QC.E.LI`, as we
|
|
// have no way to emit a relocation on a `C.LI` instruction.
|
|
return RISCV::QC_E_LI;
|
|
case RISCV::JAL: {
|
|
// We can only relax JAL if we have Xqcilb
|
|
if (!STI.hasFeature(RISCV::FeatureVendorXqcilb))
|
|
break;
|
|
|
|
// And only if it is using X0 or X1 for rd.
|
|
MCRegister Reg = Operands[0].getReg();
|
|
if (Reg == RISCV::X0)
|
|
return RISCV::QC_E_J;
|
|
if (Reg == RISCV::X1)
|
|
return RISCV::QC_E_JAL;
|
|
|
|
break;
|
|
}
|
|
case RISCV::BEQ:
|
|
return RISCV::PseudoLongBEQ;
|
|
case RISCV::BNE:
|
|
return RISCV::PseudoLongBNE;
|
|
case RISCV::BLT:
|
|
return RISCV::PseudoLongBLT;
|
|
case RISCV::BGE:
|
|
return RISCV::PseudoLongBGE;
|
|
case RISCV::BLTU:
|
|
return RISCV::PseudoLongBLTU;
|
|
case RISCV::BGEU:
|
|
return RISCV::PseudoLongBGEU;
|
|
case RISCV::QC_BEQI:
|
|
return RISCV::PseudoLongQC_BEQI;
|
|
case RISCV::QC_BNEI:
|
|
return RISCV::PseudoLongQC_BNEI;
|
|
case RISCV::QC_BLTI:
|
|
return RISCV::PseudoLongQC_BLTI;
|
|
case RISCV::QC_BGEI:
|
|
return RISCV::PseudoLongQC_BGEI;
|
|
case RISCV::QC_BLTUI:
|
|
return RISCV::PseudoLongQC_BLTUI;
|
|
case RISCV::QC_BGEUI:
|
|
return RISCV::PseudoLongQC_BGEUI;
|
|
case RISCV::QC_E_BEQI:
|
|
return RISCV::PseudoLongQC_E_BEQI;
|
|
case RISCV::QC_E_BNEI:
|
|
return RISCV::PseudoLongQC_E_BNEI;
|
|
case RISCV::QC_E_BLTI:
|
|
return RISCV::PseudoLongQC_E_BLTI;
|
|
case RISCV::QC_E_BGEI:
|
|
return RISCV::PseudoLongQC_E_BGEI;
|
|
case RISCV::QC_E_BLTUI:
|
|
return RISCV::PseudoLongQC_E_BLTUI;
|
|
case RISCV::QC_E_BGEUI:
|
|
return RISCV::PseudoLongQC_E_BGEUI;
|
|
}
|
|
|
|
// Returning the original opcode means we cannot relax the instruction.
|
|
return Opcode;
|
|
}
|
|
|
|
void RISCVAsmBackend::relaxInstruction(MCInst &Inst,
|
|
const MCSubtargetInfo &STI) const {
|
|
if (STI.hasFeature(RISCV::FeatureExactAssembly))
|
|
return;
|
|
|
|
MCInst Res;
|
|
switch (Inst.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Opcode not expected!");
|
|
case RISCV::C_BEQZ:
|
|
case RISCV::C_BNEZ:
|
|
case RISCV::C_J:
|
|
case RISCV::C_JAL: {
|
|
[[maybe_unused]] bool Success = RISCVRVC::uncompress(Res, Inst, STI);
|
|
assert(Success && "Can't uncompress instruction");
|
|
assert(Res.getOpcode() ==
|
|
getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI) &&
|
|
"Branch Relaxation Error");
|
|
break;
|
|
}
|
|
case RISCV::JAL: {
|
|
// This has to be written manually because the QC.E.J -> JAL is
|
|
// compression-only, so that it is not used when printing disassembly.
|
|
assert(STI.hasFeature(RISCV::FeatureVendorXqcilb) &&
|
|
"JAL is only relaxable with Xqcilb");
|
|
assert((Inst.getOperand(0).getReg() == RISCV::X0 ||
|
|
Inst.getOperand(0).getReg() == RISCV::X1) &&
|
|
"JAL only relaxable with rd=x0 or rd=x1");
|
|
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
|
|
Res.addOperand(Inst.getOperand(1));
|
|
break;
|
|
}
|
|
case RISCV::C_LI: {
|
|
// This should only be hit when trying to relax a `C.LI` into a `QC.E.LI`
|
|
// because the `C.LI` has a bare symbol. We cannot use
|
|
// `RISCVRVC::uncompress` because it will use decompression patterns. The
|
|
// `QC.E.LI` compression pattern to `C.LI` is compression-only (because we
|
|
// don't want `c.li` ever printed as `qc.e.li`, which might be done if the
|
|
// pattern applied to decompression), but that doesn't help much becuase
|
|
// `C.LI` with a bare symbol will decompress to an `ADDI` anyway (because
|
|
// `simm12`'s MCOperandPredicate accepts a bare symbol and that pattern
|
|
// comes first), and we still cannot emit an `ADDI` with a bare symbol.
|
|
assert(STI.hasFeature(RISCV::FeatureVendorXqcili) &&
|
|
"C.LI is only relaxable with Xqcili");
|
|
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
|
|
Res.addOperand(Inst.getOperand(0));
|
|
Res.addOperand(Inst.getOperand(1));
|
|
break;
|
|
}
|
|
case RISCV::BEQ:
|
|
case RISCV::BNE:
|
|
case RISCV::BLT:
|
|
case RISCV::BGE:
|
|
case RISCV::BLTU:
|
|
case RISCV::BGEU:
|
|
case RISCV::QC_BEQI:
|
|
case RISCV::QC_BNEI:
|
|
case RISCV::QC_BLTI:
|
|
case RISCV::QC_BGEI:
|
|
case RISCV::QC_BLTUI:
|
|
case RISCV::QC_BGEUI:
|
|
case RISCV::QC_E_BEQI:
|
|
case RISCV::QC_E_BNEI:
|
|
case RISCV::QC_E_BLTI:
|
|
case RISCV::QC_E_BGEI:
|
|
case RISCV::QC_E_BLTUI:
|
|
case RISCV::QC_E_BGEUI:
|
|
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
|
|
Res.addOperand(Inst.getOperand(0));
|
|
Res.addOperand(Inst.getOperand(1));
|
|
Res.addOperand(Inst.getOperand(2));
|
|
break;
|
|
}
|
|
Inst = std::move(Res);
|
|
}
|
|
|
|
// Check if an R_RISCV_ALIGN relocation is needed for an alignment directive.
|
|
// If conditions are met, compute the padding size and create a fixup encoding
|
|
// the padding size in the addend.
|
|
bool RISCVAsmBackend::relaxAlign(MCFragment &F, unsigned &Size) {
|
|
// Alignments before the first linker-relaxable instruction have fixed sizes
|
|
// and do not require relocations. Alignments after a linker-relaxable
|
|
// instruction require a relocation, even if the STI specifies norelax.
|
|
//
|
|
// firstLinkerRelaxable is the layout order within the subsection, which may
|
|
// be smaller than the section's order. Therefore, alignments in a
|
|
// lower-numbered subsection may be unnecessarily treated as linker-relaxable.
|
|
auto *Sec = F.getParent();
|
|
if (F.getLayoutOrder() <= Sec->firstLinkerRelaxable())
|
|
return false;
|
|
|
|
// Use default handling unless the alignment is larger than the nop size.
|
|
const MCSubtargetInfo *STI = F.getSubtargetInfo();
|
|
unsigned MinNopLen =
|
|
AlignRvc || STI->hasFeature(RISCV::FeatureStdExtZca) ? 2 : 4;
|
|
if (F.getAlignment() <= MinNopLen)
|
|
return false;
|
|
|
|
Size = F.getAlignment().value() - MinNopLen;
|
|
auto *Expr = MCConstantExpr::create(Size, getContext());
|
|
MCFixup Fixup =
|
|
MCFixup::create(0, Expr, FirstLiteralRelocationKind + ELF::R_RISCV_ALIGN);
|
|
F.setVarFixups({Fixup});
|
|
F.setLinkerRelaxable();
|
|
return true;
|
|
}
|
|
|
|
bool RISCVAsmBackend::relaxDwarfLineAddr(MCFragment &F,
|
|
bool &WasRelaxed) const {
|
|
int64_t LineDelta = F.getDwarfLineDelta();
|
|
const MCExpr &AddrDelta = F.getDwarfAddrDelta();
|
|
size_t OldSize = F.getVarSize();
|
|
|
|
int64_t Value;
|
|
// If the label difference can be resolved, use the default handling, which
|
|
// utilizes a shorter special opcode.
|
|
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
|
|
return false;
|
|
[[maybe_unused]] bool IsAbsolute =
|
|
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
|
|
assert(IsAbsolute && "CFA with invalid expression");
|
|
|
|
SmallVector<char> Data;
|
|
raw_svector_ostream OS(Data);
|
|
|
|
// INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
|
|
if (LineDelta != INT64_MAX) {
|
|
OS << uint8_t(dwarf::DW_LNS_advance_line);
|
|
encodeSLEB128(LineDelta, OS);
|
|
}
|
|
|
|
// According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
|
|
// takes a single unsigned half (unencoded) operand. The maximum encodable
|
|
// value is therefore 65535. Set a conservative upper bound for relaxation.
|
|
unsigned PCBytes;
|
|
if (Value > 60000) {
|
|
PCBytes = getContext().getAsmInfo()->getCodePointerSize();
|
|
OS << uint8_t(dwarf::DW_LNS_extended_op) << uint8_t(PCBytes + 1)
|
|
<< uint8_t(dwarf::DW_LNE_set_address);
|
|
OS.write_zeros(PCBytes);
|
|
} else {
|
|
PCBytes = 2;
|
|
OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
|
|
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
|
|
}
|
|
auto Offset = OS.tell() - PCBytes;
|
|
|
|
if (LineDelta == INT64_MAX) {
|
|
OS << uint8_t(dwarf::DW_LNS_extended_op);
|
|
OS << uint8_t(1);
|
|
OS << uint8_t(dwarf::DW_LNE_end_sequence);
|
|
} else {
|
|
OS << uint8_t(dwarf::DW_LNS_copy);
|
|
}
|
|
|
|
F.setVarContents(Data);
|
|
F.setVarFixups({MCFixup::create(Offset, &AddrDelta,
|
|
MCFixup::getDataKindForSize(PCBytes))});
|
|
WasRelaxed = OldSize != Data.size();
|
|
return true;
|
|
}
|
|
|
|
bool RISCVAsmBackend::relaxDwarfCFA(MCFragment &F, bool &WasRelaxed) const {
|
|
const MCExpr &AddrDelta = F.getDwarfAddrDelta();
|
|
SmallVector<MCFixup, 2> Fixups;
|
|
size_t OldSize = F.getVarSize();
|
|
|
|
int64_t Value;
|
|
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
|
|
return false;
|
|
[[maybe_unused]] bool IsAbsolute =
|
|
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
|
|
assert(IsAbsolute && "CFA with invalid expression");
|
|
|
|
assert(getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
|
|
"expected 1-byte alignment");
|
|
if (Value == 0) {
|
|
F.clearVarContents();
|
|
F.clearVarFixups();
|
|
WasRelaxed = OldSize != 0;
|
|
return true;
|
|
}
|
|
|
|
auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset,
|
|
std::pair<unsigned, unsigned> Fixup) {
|
|
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
|
|
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
|
|
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
|
|
};
|
|
|
|
SmallVector<char, 8> Data;
|
|
raw_svector_ostream OS(Data);
|
|
if (isUIntN(6, Value)) {
|
|
OS << uint8_t(dwarf::DW_CFA_advance_loc);
|
|
AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6});
|
|
} else if (isUInt<8>(Value)) {
|
|
OS << uint8_t(dwarf::DW_CFA_advance_loc1);
|
|
support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
|
|
AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8});
|
|
} else if (isUInt<16>(Value)) {
|
|
OS << uint8_t(dwarf::DW_CFA_advance_loc2);
|
|
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
|
|
AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16});
|
|
} else if (isUInt<32>(Value)) {
|
|
OS << uint8_t(dwarf::DW_CFA_advance_loc4);
|
|
support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
|
|
AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32});
|
|
} else {
|
|
llvm_unreachable("unsupported CFA encoding");
|
|
}
|
|
F.setVarContents(Data);
|
|
F.setVarFixups(Fixups);
|
|
|
|
WasRelaxed = OldSize != Data.size();
|
|
return true;
|
|
}
|
|
|
|
std::pair<bool, bool> RISCVAsmBackend::relaxLEB128(MCFragment &LF,
|
|
int64_t &Value) const {
|
|
if (LF.isLEBSigned())
|
|
return std::make_pair(false, false);
|
|
const MCExpr &Expr = LF.getLEBValue();
|
|
if (ULEB128Reloc) {
|
|
LF.setVarFixups({MCFixup::create(0, &Expr, FK_Data_leb128)});
|
|
}
|
|
return std::make_pair(Expr.evaluateKnownAbsolute(Value, *Asm), false);
|
|
}
|
|
|
|
bool RISCVAsmBackend::mayNeedRelaxation(unsigned Opcode,
|
|
ArrayRef<MCOperand> Operands,
|
|
const MCSubtargetInfo &STI) const {
|
|
// This function has access to two STIs, the member of the AsmBackend, and the
|
|
// one passed as an argument. The latter is more specific, so we query it for
|
|
// specific features.
|
|
if (STI.hasFeature(RISCV::FeatureExactAssembly))
|
|
return false;
|
|
|
|
return getRelaxedOpcode(Opcode, Operands, STI) != Opcode;
|
|
}
|
|
|
|
bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
|
|
const MCSubtargetInfo *STI) const {
|
|
// We mostly follow binutils' convention here: align to even boundary with a
|
|
// 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is
|
|
// enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops.
|
|
|
|
// Instructions always are at even addresses. We must be in a data area or
|
|
// be unaligned due to some other reason.
|
|
if (Count % 2) {
|
|
OS.write("\0", 1);
|
|
Count -= 1;
|
|
}
|
|
|
|
// TODO: emit a mapping symbol right here
|
|
|
|
if (Count % 4 == 2) {
|
|
// The canonical nop with Zca is c.nop. For .balign 4, we generate a 2-byte
|
|
// c.nop even in a norvc region.
|
|
OS.write("\x01\0", 2);
|
|
Count -= 2;
|
|
}
|
|
|
|
// The canonical nop on RISC-V is addi x0, x0, 0.
|
|
for (; Count >= 4; Count -= 4)
|
|
OS.write("\x13\0\0\0", 4);
|
|
|
|
return true;
|
|
}
|
|
|
|
static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
|
|
MCContext &Ctx) {
|
|
switch (Fixup.getKind()) {
|
|
default:
|
|
llvm_unreachable("Unknown fixup kind!");
|
|
case FK_Data_1:
|
|
case FK_Data_2:
|
|
case FK_Data_4:
|
|
case FK_Data_8:
|
|
case FK_Data_leb128:
|
|
return Value;
|
|
case RISCV::fixup_riscv_lo12_i:
|
|
case RISCV::fixup_riscv_pcrel_lo12_i:
|
|
return Value & 0xfff;
|
|
case RISCV::fixup_riscv_12_i:
|
|
if (!isInt<12>(Value)) {
|
|
Ctx.reportError(Fixup.getLoc(),
|
|
"operand must be a constant 12-bit integer");
|
|
}
|
|
return Value & 0xfff;
|
|
case RISCV::fixup_riscv_lo12_s:
|
|
case RISCV::fixup_riscv_pcrel_lo12_s:
|
|
return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7);
|
|
case RISCV::fixup_riscv_hi20:
|
|
case RISCV::fixup_riscv_pcrel_hi20:
|
|
// Add 1 if bit 11 is 1, to compensate for low 12 bits being negative.
|
|
return ((Value + 0x800) >> 12) & 0xfffff;
|
|
case RISCV::fixup_riscv_jal: {
|
|
if (!isInt<21>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
if (Value & 0x1)
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
|
|
// Need to produce imm[19|10:1|11|19:12] from the 21-bit Value.
|
|
unsigned Sbit = (Value >> 20) & 0x1;
|
|
unsigned Hi8 = (Value >> 12) & 0xff;
|
|
unsigned Mid1 = (Value >> 11) & 0x1;
|
|
unsigned Lo10 = (Value >> 1) & 0x3ff;
|
|
// Inst{31} = Sbit;
|
|
// Inst{30-21} = Lo10;
|
|
// Inst{20} = Mid1;
|
|
// Inst{19-12} = Hi8;
|
|
Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8;
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_qc_e_branch:
|
|
case RISCV::fixup_riscv_branch: {
|
|
if (!isInt<13>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
if (Value & 0x1)
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
|
|
// Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit
|
|
// Value.
|
|
unsigned Sbit = (Value >> 12) & 0x1;
|
|
unsigned Hi1 = (Value >> 11) & 0x1;
|
|
unsigned Mid6 = (Value >> 5) & 0x3f;
|
|
unsigned Lo4 = (Value >> 1) & 0xf;
|
|
// Inst{31} = Sbit;
|
|
// Inst{30-25} = Mid6;
|
|
// Inst{11-8} = Lo4;
|
|
// Inst{7} = Hi1;
|
|
Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_call:
|
|
case RISCV::fixup_riscv_call_plt: {
|
|
// Jalr will add UpperImm with the sign-extended 12-bit LowerImm,
|
|
// we need to add 0x800ULL before extract upper bits to reflect the
|
|
// effect of the sign extension.
|
|
uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL;
|
|
uint64_t LowerImm = Value & 0xfffULL;
|
|
return UpperImm | ((LowerImm << 20) << 32);
|
|
}
|
|
case RISCV::fixup_riscv_rvc_jump: {
|
|
if (!isInt<12>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
// Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value.
|
|
unsigned Bit11 = (Value >> 11) & 0x1;
|
|
unsigned Bit4 = (Value >> 4) & 0x1;
|
|
unsigned Bit9_8 = (Value >> 8) & 0x3;
|
|
unsigned Bit10 = (Value >> 10) & 0x1;
|
|
unsigned Bit6 = (Value >> 6) & 0x1;
|
|
unsigned Bit7 = (Value >> 7) & 0x1;
|
|
unsigned Bit3_1 = (Value >> 1) & 0x7;
|
|
unsigned Bit5 = (Value >> 5) & 0x1;
|
|
Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) |
|
|
(Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5;
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_rvc_branch: {
|
|
if (!isInt<9>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
// Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5]
|
|
unsigned Bit8 = (Value >> 8) & 0x1;
|
|
unsigned Bit7_6 = (Value >> 6) & 0x3;
|
|
unsigned Bit5 = (Value >> 5) & 0x1;
|
|
unsigned Bit4_3 = (Value >> 3) & 0x3;
|
|
unsigned Bit2_1 = (Value >> 1) & 0x3;
|
|
Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) |
|
|
(Bit5 << 2);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_rvc_imm: {
|
|
if (!isInt<6>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
unsigned Bit5 = (Value >> 5) & 0x1;
|
|
unsigned Bit4_0 = Value & 0x1f;
|
|
Value = (Bit5 << 12) | (Bit4_0 << 2);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_qc_e_32: {
|
|
if (!isInt<32>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
return Value & 0xffffffffu;
|
|
}
|
|
case RISCV::fixup_riscv_qc_abs20_u: {
|
|
if (!isInt<20>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
unsigned Bit19 = (Value >> 19) & 0x1;
|
|
unsigned Bit14_0 = Value & 0x7fff;
|
|
unsigned Bit18_15 = (Value >> 15) & 0xf;
|
|
Value = (Bit19 << 31) | (Bit14_0 << 16) | (Bit18_15 << 12);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_qc_e_call_plt: {
|
|
if (!isInt<32>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
if (Value & 0x1)
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
|
|
uint64_t Bit31_16 = (Value >> 16) & 0xffff;
|
|
uint64_t Bit12 = (Value >> 12) & 0x1;
|
|
uint64_t Bit10_5 = (Value >> 5) & 0x3f;
|
|
uint64_t Bit15_13 = (Value >> 13) & 0x7;
|
|
uint64_t Bit4_1 = (Value >> 1) & 0xf;
|
|
uint64_t Bit11 = (Value >> 11) & 0x1;
|
|
Value = (Bit31_16 << 32ull) | (Bit12 << 31) | (Bit10_5 << 25) |
|
|
(Bit15_13 << 17) | (Bit4_1 << 8) | (Bit11 << 7);
|
|
return Value;
|
|
}
|
|
case RISCV::fixup_riscv_nds_branch_10: {
|
|
if (!isInt<11>(Value))
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
|
|
if (Value & 0x1)
|
|
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
|
|
// Need to extract imm[10], imm[9:5], imm[4:1] from the 11-bit Value.
|
|
unsigned Sbit = (Value >> 10) & 0x1;
|
|
unsigned Hi5 = (Value >> 5) & 0x1f;
|
|
unsigned Lo4 = (Value >> 1) & 0xf;
|
|
// Inst{31} = Sbit;
|
|
// Inst{29-25} = Hi5;
|
|
// Inst{11-8} = Lo4;
|
|
Value = (Sbit << 31) | (Hi5 << 25) | (Lo4 << 8);
|
|
return Value;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RISCVAsmBackend::isPCRelFixupResolved(const MCSymbol *SymA,
|
|
const MCFragment &F) {
|
|
// If the section does not contain linker-relaxable fragments, PC-relative
|
|
// fixups can be resolved.
|
|
if (!F.getParent()->isLinkerRelaxable())
|
|
return true;
|
|
|
|
// Otherwise, check if the offset between the symbol and fragment is fully
|
|
// resolved, unaffected by linker-relaxable fragments (e.g. instructions or
|
|
// offset-affected FT_Align fragments). Complements the generic
|
|
// isSymbolRefDifferenceFullyResolvedImpl.
|
|
if (!PCRelTemp)
|
|
PCRelTemp = getContext().createTempSymbol();
|
|
PCRelTemp->setFragment(const_cast<MCFragment *>(&F));
|
|
MCValue Res;
|
|
MCExpr::evaluateSymbolicAdd(Asm, false, MCValue::get(SymA),
|
|
MCValue::get(nullptr, PCRelTemp), Res);
|
|
return !Res.getSubSym();
|
|
}
|
|
|
|
// Get the corresponding PC-relative HI fixup that a S_PCREL_LO points to, and
|
|
// optionally the fragment containing it.
|
|
//
|
|
// \returns nullptr if this isn't a S_PCREL_LO pointing to a known PC-relative
|
|
// HI fixup.
|
|
static const MCFixup *getPCRelHiFixup(const MCSpecifierExpr &Expr,
|
|
const MCFragment **DFOut) {
|
|
MCValue AUIPCLoc;
|
|
if (!Expr.getSubExpr()->evaluateAsRelocatable(AUIPCLoc, nullptr))
|
|
return nullptr;
|
|
|
|
const MCSymbol *AUIPCSymbol = AUIPCLoc.getAddSym();
|
|
if (!AUIPCSymbol)
|
|
return nullptr;
|
|
const auto *DF = AUIPCSymbol->getFragment();
|
|
if (!DF)
|
|
return nullptr;
|
|
|
|
uint64_t Offset = AUIPCSymbol->getOffset();
|
|
if (DF->getContents().size() == Offset) {
|
|
DF = DF->getNext();
|
|
if (!DF)
|
|
return nullptr;
|
|
Offset = 0;
|
|
}
|
|
|
|
for (const MCFixup &F : DF->getFixups()) {
|
|
if (F.getOffset() != Offset)
|
|
continue;
|
|
auto Kind = F.getKind();
|
|
if (!mc::isRelocation(F.getKind())) {
|
|
if (Kind == RISCV::fixup_riscv_pcrel_hi20) {
|
|
*DFOut = DF;
|
|
return &F;
|
|
}
|
|
break;
|
|
}
|
|
switch (Kind) {
|
|
case ELF::R_RISCV_GOT_HI20:
|
|
case ELF::R_RISCV_TLS_GOT_HI20:
|
|
case ELF::R_RISCV_TLS_GD_HI20:
|
|
case ELF::R_RISCV_TLSDESC_HI20:
|
|
*DFOut = DF;
|
|
return &F;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
std::optional<bool> RISCVAsmBackend::evaluateFixup(const MCFragment &,
|
|
MCFixup &Fixup,
|
|
MCValue &Target,
|
|
uint64_t &Value) {
|
|
const MCFixup *AUIPCFixup;
|
|
const MCFragment *AUIPCDF;
|
|
MCValue AUIPCTarget;
|
|
switch (Fixup.getKind()) {
|
|
default:
|
|
// Use default handling for `Value` and `IsResolved`.
|
|
return {};
|
|
case RISCV::fixup_riscv_pcrel_lo12_i:
|
|
case RISCV::fixup_riscv_pcrel_lo12_s: {
|
|
AUIPCFixup =
|
|
getPCRelHiFixup(cast<MCSpecifierExpr>(*Fixup.getValue()), &AUIPCDF);
|
|
if (!AUIPCFixup) {
|
|
getContext().reportError(Fixup.getLoc(),
|
|
"could not find corresponding %pcrel_hi");
|
|
return true;
|
|
}
|
|
|
|
// MCAssembler::evaluateFixup will emit an error for this case when it sees
|
|
// the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo.
|
|
const MCExpr *AUIPCExpr = AUIPCFixup->getValue();
|
|
if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, Asm))
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!AUIPCTarget.getAddSym())
|
|
return false;
|
|
|
|
auto &SA = static_cast<const MCSymbolELF &>(*AUIPCTarget.getAddSym());
|
|
if (SA.isUndefined())
|
|
return false;
|
|
|
|
bool IsResolved = &SA.getSection() == AUIPCDF->getParent() &&
|
|
SA.getBinding() == ELF::STB_LOCAL &&
|
|
SA.getType() != ELF::STT_GNU_IFUNC;
|
|
if (!IsResolved)
|
|
return false;
|
|
|
|
Value = Asm->getSymbolOffset(SA) + AUIPCTarget.getConstant();
|
|
Value -= Asm->getFragmentOffset(*AUIPCDF) + AUIPCFixup->getOffset();
|
|
|
|
return AUIPCFixup->getKind() == RISCV::fixup_riscv_pcrel_hi20 &&
|
|
isPCRelFixupResolved(AUIPCTarget.getAddSym(), *AUIPCDF);
|
|
}
|
|
|
|
void RISCVAsmBackend::maybeAddVendorReloc(const MCFragment &F,
|
|
const MCFixup &Fixup) {
|
|
StringRef VendorIdentifier;
|
|
switch (Fixup.getKind()) {
|
|
default:
|
|
// No Vendor Relocation Required.
|
|
return;
|
|
case RISCV::fixup_riscv_qc_e_branch:
|
|
case RISCV::fixup_riscv_qc_abs20_u:
|
|
case RISCV::fixup_riscv_qc_e_32:
|
|
case RISCV::fixup_riscv_qc_e_call_plt:
|
|
VendorIdentifier = "QUALCOMM";
|
|
break;
|
|
case RISCV::fixup_riscv_nds_branch_10:
|
|
VendorIdentifier = "ANDES";
|
|
break;
|
|
}
|
|
|
|
// Create a local symbol for the vendor relocation to reference. It's fine if
|
|
// the symbol has the same name as an existing symbol.
|
|
MCContext &Ctx = Asm->getContext();
|
|
MCSymbol *VendorSymbol = Ctx.createLocalSymbol(VendorIdentifier);
|
|
auto [It, Inserted] =
|
|
VendorSymbols.try_emplace(VendorIdentifier, VendorSymbol);
|
|
|
|
if (Inserted) {
|
|
// Setup the just-created symbol
|
|
VendorSymbol->setVariableValue(MCConstantExpr::create(0, Ctx));
|
|
Asm->registerSymbol(*VendorSymbol);
|
|
} else {
|
|
// Fetch the existing symbol
|
|
VendorSymbol = It->getValue();
|
|
}
|
|
|
|
MCFixup VendorFixup =
|
|
MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_VENDOR);
|
|
// Explicitly create MCValue rather than using an MCExpr and evaluating it so
|
|
// that the absolute vendor symbol is not evaluated to constant 0.
|
|
MCValue VendorTarget = MCValue::get(VendorSymbol);
|
|
uint64_t VendorValue;
|
|
Asm->getWriter().recordRelocation(F, VendorFixup, VendorTarget, VendorValue);
|
|
}
|
|
|
|
bool RISCVAsmBackend::addReloc(const MCFragment &F, const MCFixup &Fixup,
|
|
const MCValue &Target, uint64_t &FixedValue,
|
|
bool IsResolved) {
|
|
uint64_t FixedValueA, FixedValueB;
|
|
if (Target.getSubSym()) {
|
|
assert(Target.getSpecifier() == 0 &&
|
|
"relocatable SymA-SymB cannot have relocation specifier");
|
|
unsigned TA = 0, TB = 0;
|
|
switch (Fixup.getKind()) {
|
|
case llvm::FK_Data_1:
|
|
TA = ELF::R_RISCV_ADD8;
|
|
TB = ELF::R_RISCV_SUB8;
|
|
break;
|
|
case llvm::FK_Data_2:
|
|
TA = ELF::R_RISCV_ADD16;
|
|
TB = ELF::R_RISCV_SUB16;
|
|
break;
|
|
case llvm::FK_Data_4:
|
|
TA = ELF::R_RISCV_ADD32;
|
|
TB = ELF::R_RISCV_SUB32;
|
|
break;
|
|
case llvm::FK_Data_8:
|
|
TA = ELF::R_RISCV_ADD64;
|
|
TB = ELF::R_RISCV_SUB64;
|
|
break;
|
|
case llvm::FK_Data_leb128:
|
|
TA = ELF::R_RISCV_SET_ULEB128;
|
|
TB = ELF::R_RISCV_SUB_ULEB128;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unsupported fixup size");
|
|
}
|
|
MCValue A = MCValue::get(Target.getAddSym(), nullptr, Target.getConstant());
|
|
MCValue B = MCValue::get(Target.getSubSym());
|
|
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, TA);
|
|
auto FB = MCFixup::create(Fixup.getOffset(), nullptr, TB);
|
|
Asm->getWriter().recordRelocation(F, FA, A, FixedValueA);
|
|
Asm->getWriter().recordRelocation(F, FB, B, FixedValueB);
|
|
FixedValue = FixedValueA - FixedValueB;
|
|
return false;
|
|
}
|
|
|
|
// If linker relaxation is enabled and supported by the current relocation,
|
|
// generate a relocation and then append a RELAX.
|
|
if (Fixup.isLinkerRelaxable())
|
|
IsResolved = false;
|
|
if (IsResolved && Fixup.isPCRel())
|
|
IsResolved = isPCRelFixupResolved(Target.getAddSym(), F);
|
|
|
|
if (!IsResolved) {
|
|
// Some Fixups require a vendor relocation, record it (directly) before we
|
|
// add the relocation.
|
|
maybeAddVendorReloc(F, Fixup);
|
|
|
|
Asm->getWriter().recordRelocation(F, Fixup, Target, FixedValue);
|
|
}
|
|
|
|
if (Fixup.isLinkerRelaxable()) {
|
|
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_RELAX);
|
|
Asm->getWriter().recordRelocation(F, FA, MCValue::get(nullptr),
|
|
FixedValueA);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void RISCVAsmBackend::applyFixup(const MCFragment &F, const MCFixup &Fixup,
|
|
const MCValue &Target, uint8_t *Data,
|
|
uint64_t Value, bool IsResolved) {
|
|
IsResolved = addReloc(F, Fixup, Target, Value, IsResolved);
|
|
MCFixupKind Kind = Fixup.getKind();
|
|
if (mc::isRelocation(Kind))
|
|
return;
|
|
MCContext &Ctx = getContext();
|
|
MCFixupKindInfo Info = getFixupKindInfo(Kind);
|
|
if (!Value)
|
|
return; // Doesn't change encoding.
|
|
// Apply any target-specific value adjustments.
|
|
Value = adjustFixupValue(Fixup, Value, Ctx);
|
|
|
|
// Shift the value into position.
|
|
Value <<= Info.TargetOffset;
|
|
|
|
unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
|
|
assert(Fixup.getOffset() + NumBytes <= F.getSize() &&
|
|
"Invalid fixup offset!");
|
|
|
|
// For each byte of the fragment that the fixup touches, mask in the
|
|
// bits from the fixup value.
|
|
for (unsigned i = 0; i != NumBytes; ++i) {
|
|
Data[i] |= uint8_t((Value >> (i * 8)) & 0xff);
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<MCObjectTargetWriter>
|
|
RISCVAsmBackend::createObjectTargetWriter() const {
|
|
return createRISCVELFObjectWriter(OSABI, Is64Bit);
|
|
}
|
|
|
|
MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T,
|
|
const MCSubtargetInfo &STI,
|
|
const MCRegisterInfo &MRI,
|
|
const MCTargetOptions &Options) {
|
|
const Triple &TT = STI.getTargetTriple();
|
|
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
|
|
return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
|
|
}
|