
The logic in RISCVMatInt would previously produce lui+addiw on RV64 whenever a 32-bit integer must be materialised and the Hi20 and Lo12 parts are non-zero. However, sometimes addi can be used equivalently (whenever the sign extension behaviour of addiw would be a no-op). This patch moves to using addiw only when necessary. Although there is absolutely no advantage in terms of compressibility or performance, this has the following advantages: * It's more consistent with logic used elsewhere in the backend. For instance, RISCVOptWInstrs will try to convert addiw to addi on the basis it reduces test diffs vs RV32. * This matches the lowering GCC does in its codegen path. Unlike LLVM, GCC seems to have different expansion logic for the assembler vs codegen. For codegen it will use lui+addi if possible, but expanding `li` in the assembler will always produces lui+addiw as LLVM did prior to this commit. As someone who has been looking at a lot of gcc vs clang diffs lately, reducing unnecessary divergence is of at least some value. * As the diff for fold-mem-offset.ll shows, we can fold memory offsets in more cases when addi is used. Memory offset folding could be taught to recognise when the addiw could be replaced with an addi, but that seems unnecessary when we can simply change the logic in RISCVMatInt. As pointed out by @topperc during review, making this change without modifying RISCVOptWInstrs risks introducing some cases where we fail to remove a sext.w that we removed before. I've incorporated a patch based on a suggestion from Craig that avoids it, and also adds appropriate RISCVOptWInstrs test cases. The initial patch description noted that the main motivation was to avoid unnecessary differences both for RV32/RV64 and when comparing GCC, but noted that very occasionally we see a benefit from memory offset folding kicking in when it didn't before. Looking at the dynamic instruction count difference for SPEC benchmarks targeting rva22u64 and it shows we actually get a meaningful ~4.3% reduction in dynamic icount for 519.lbm_r. Looking at the data more closely, the codegen difference is in `LBM_performStreamCollideTRT` which as a function accounts for ~98% for dynamically executed instructions and the codegen diffs appear to be a knock-on effect of the address merging reducing register pressure right from function entry (for instance, we get a big reduction in dynamically executed loads in that function). Below is the icount data (rva22u64 -O3, no LTO): ``` Benchmark Baseline This PR Diff (%) ============================================================ 500.perlbench_r 174116601991 174115795810 -0.00% 502.gcc_r 218903280858 218903215788 -0.00% 505.mcf_r 131208029185 131207692803 -0.00% 508.namd_r 217497594322 217497594297 -0.00% 510.parest_r 289314486153 289313577652 -0.00% 511.povray_r 30640531048 30640765701 0.00% 519.lbm_r 95897914862 91712688050 -4.36% 520.omnetpp_r 134641549722 134867015683 0.17% 523.xalancbmk_r 281462762992 281432092673 -0.01% 525.x264_r 379776121941 379535558210 -0.06% 526.blender_r 659736022025 659738387343 0.00% 531.deepsjeng_r 349122867552 349122867481 -0.00% 538.imagick_r 238558760552 238558753269 -0.00% 541.leela_r 406578560612 406385135260 -0.05% 544.nab_r 400997131674 400996765827 -0.00% 557.xz_r 130079522194 129945515709 -0.10% ``` The instcounting setup I use doesn't have good support for drilling down into functions from outside the linked executable (e.g. libc). The difference in omnetpp all seems to come from there, and does not reflect any degradation in codegen quality. I can confirm with the current version of the PR there is no change in the number of static sext.w across all the SPEC 2017 benchmarks (rva22u64 O3) Co-authored-by: Craig Topper <craig.topper@sifive.com>
588 lines
21 KiB
C++
588 lines
21 KiB
C++
//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVMatInt.h"
|
|
#include "MCTargetDesc/RISCVMCTargetDesc.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/MC/MCInstBuilder.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
|
|
if (!HasRVC)
|
|
return Res.size();
|
|
|
|
int Cost = 0;
|
|
for (auto Instr : Res) {
|
|
// Assume instructions that aren't listed aren't compressible.
|
|
bool Compressed = false;
|
|
switch (Instr.getOpcode()) {
|
|
case RISCV::QC_E_LI:
|
|
// One 48-bit instruction takes the space of 1.5 regular instructions.
|
|
Cost += 150;
|
|
continue;
|
|
case RISCV::SLLI:
|
|
case RISCV::SRLI:
|
|
Compressed = true;
|
|
break;
|
|
case RISCV::ADDI:
|
|
case RISCV::ADDIW:
|
|
case RISCV::LUI:
|
|
Compressed = isInt<6>(Instr.getImm());
|
|
break;
|
|
}
|
|
// Two RVC instructions take the same space as one RVI instruction, but
|
|
// can take longer to execute than the single RVI instruction. Thus, we
|
|
// consider that two RVC instruction are slightly more costly than one
|
|
// RVI instruction. For longer sequences of RVC instructions the space
|
|
// savings can be worth it, though. The costs below try to model that.
|
|
if (!Compressed)
|
|
Cost += 100; // Baseline cost of one RVI instruction: 100%.
|
|
else
|
|
Cost += 70; // 70% cost of baseline.
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
// Recursively generate a sequence for materializing an integer.
|
|
static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
|
|
RISCVMatInt::InstSeq &Res) {
|
|
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
|
|
|
|
// Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
|
|
if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
|
|
(!isInt<32>(Val) || Val == 0x800)) {
|
|
Res.emplace_back(RISCV::BSETI, Log2_64(Val));
|
|
return;
|
|
}
|
|
|
|
if (!IsRV64 && STI.hasFeature(RISCV::FeatureVendorXqcili)) {
|
|
bool FitsOneStandardInst = ((Val & 0xFFF) == 0) || isInt<12>(Val);
|
|
|
|
// 20-bit signed immediates that don't fit into `ADDI` or `LUI` should use
|
|
// `QC.LI` (a single 32-bit instruction).
|
|
if (!FitsOneStandardInst && isInt<20>(Val)) {
|
|
Res.emplace_back(RISCV::QC_LI, Val);
|
|
return;
|
|
}
|
|
|
|
// 32-bit signed immediates that don't fit into `ADDI`, `LUI` or `QC.LI`
|
|
// should use `QC.E.LI` (a single 48-bit instruction).
|
|
if (!FitsOneStandardInst && isInt<32>(Val)) {
|
|
Res.emplace_back(RISCV::QC_E_LI, Val);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (isInt<32>(Val)) {
|
|
// Depending on the active bits in the immediate Value v, the following
|
|
// instruction sequences are emitted:
|
|
//
|
|
// v == 0 : ADDI
|
|
// v[0,12) != 0 && v[12,32) == 0 : ADDI
|
|
// v[0,12) == 0 && v[12,32) != 0 : LUI
|
|
// v[0,32) != 0 : LUI+ADDI(W)
|
|
int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
|
|
int64_t Lo12 = SignExtend64<12>(Val);
|
|
|
|
if (Hi20)
|
|
Res.emplace_back(RISCV::LUI, Hi20);
|
|
|
|
if (Lo12 || Hi20 == 0) {
|
|
unsigned AddiOpc = RISCV::ADDI;
|
|
if (IsRV64 && Hi20) {
|
|
// Use ADDIW rather than ADDI only when necessary for correctness. As
|
|
// noted in RISCVOptWInstrs, this helps reduce test differences vs
|
|
// RV32 without being a pessimization.
|
|
int64_t LuiRes = SignExtend64<32>(Hi20 << 12);
|
|
if (!isInt<32>(LuiRes + Lo12))
|
|
AddiOpc = RISCV::ADDIW;
|
|
}
|
|
Res.emplace_back(AddiOpc, Lo12);
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
|
|
|
|
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
|
|
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
|
|
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
|
|
// while the following ADDI instructions contribute up to 12 bits each.
|
|
//
|
|
// On the first glance, implementing this seems to be possible by simply
|
|
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
|
|
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
|
|
// fact that ADDI performs a sign extended addition, doing it like that would
|
|
// only be possible when at most 11 bits of the ADDI instructions are used.
|
|
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
|
|
// requires that the constant is processed starting with the least significant
|
|
// bit.
|
|
//
|
|
// In the following, constants are processed from LSB to MSB but instruction
|
|
// emission is performed from MSB to LSB by recursively calling
|
|
// generateInstSeq. In each recursion, first the lowest 12 bits are removed
|
|
// from the constant and the optimal shift amount, which can be greater than
|
|
// 12 bits if the constant is sparse, is determined. Then, the shifted
|
|
// remaining constant is processed recursively and gets emitted as soon as it
|
|
// fits into 32 bits. The emission of the shifts and additions is subsequently
|
|
// performed when the recursion returns.
|
|
|
|
int64_t Lo12 = SignExtend64<12>(Val);
|
|
Val = (uint64_t)Val - (uint64_t)Lo12;
|
|
|
|
int ShiftAmount = 0;
|
|
bool Unsigned = false;
|
|
|
|
// Val might now be valid for LUI without needing a shift.
|
|
if (!isInt<32>(Val)) {
|
|
ShiftAmount = llvm::countr_zero((uint64_t)Val);
|
|
Val >>= ShiftAmount;
|
|
|
|
// If the remaining bits don't fit in 12 bits, we might be able to reduce
|
|
// the // shift amount in order to use LUI which will zero the lower 12
|
|
// bits.
|
|
if (ShiftAmount > 12 && !isInt<12>(Val)) {
|
|
if (isInt<32>((uint64_t)Val << 12)) {
|
|
// Reduce the shift amount and add zeros to the LSBs so it will match
|
|
// LUI.
|
|
ShiftAmount -= 12;
|
|
Val = (uint64_t)Val << 12;
|
|
} else if (isUInt<32>((uint64_t)Val << 12) &&
|
|
STI.hasFeature(RISCV::FeatureStdExtZba)) {
|
|
// Reduce the shift amount and add zeros to the LSBs so it will match
|
|
// LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
|
|
ShiftAmount -= 12;
|
|
Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
|
|
Unsigned = true;
|
|
}
|
|
}
|
|
|
|
// Try to use SLLI_UW for Val when it is uint32 but not int32.
|
|
if (isUInt<32>(Val) && !isInt<32>(Val) &&
|
|
STI.hasFeature(RISCV::FeatureStdExtZba)) {
|
|
// Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
|
|
// SLLI_UW.
|
|
Val = ((uint64_t)Val) | (0xffffffffull << 32);
|
|
Unsigned = true;
|
|
}
|
|
}
|
|
|
|
generateInstSeqImpl(Val, STI, Res);
|
|
|
|
// Skip shift if we were able to use LUI directly.
|
|
if (ShiftAmount) {
|
|
unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
|
|
Res.emplace_back(Opc, ShiftAmount);
|
|
}
|
|
|
|
if (Lo12)
|
|
Res.emplace_back(RISCV::ADDI, Lo12);
|
|
}
|
|
|
|
static unsigned extractRotateInfo(int64_t Val) {
|
|
// for case: 0b111..1..xxxxxx1..1..
|
|
unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
|
|
unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
|
|
if (TrailingOnes > 0 && TrailingOnes < 64 &&
|
|
(LeadingOnes + TrailingOnes) > (64 - 12))
|
|
return 64 - TrailingOnes;
|
|
|
|
// for case: 0bxxx1..1..1...xxx
|
|
unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
|
|
unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
|
|
if (UpperTrailingOnes < 32 &&
|
|
(UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
|
|
return 32 - UpperTrailingOnes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
|
|
RISCVMatInt::InstSeq &Res) {
|
|
assert(Val > 0 && "Expected positive val");
|
|
|
|
unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
|
|
uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
|
|
// Fill in the bits that will be shifted out with 1s. An example where this
|
|
// helps is trailing one masks with 32 or more ones. This will generate
|
|
// ADDI -1 and an SRLI.
|
|
ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
|
|
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement or the original is empty.
|
|
if ((TmpSeq.size() + 1) < Res.size() ||
|
|
(Res.empty() && TmpSeq.size() < 8)) {
|
|
TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
|
|
Res = TmpSeq;
|
|
}
|
|
|
|
// Some cases can benefit from filling the lower bits with zeros instead.
|
|
ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
|
|
TmpSeq.clear();
|
|
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement or the original is empty.
|
|
if ((TmpSeq.size() + 1) < Res.size() ||
|
|
(Res.empty() && TmpSeq.size() < 8)) {
|
|
TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
|
|
Res = TmpSeq;
|
|
}
|
|
|
|
// If we have exactly 32 leading zeros and Zba, we can try using zext.w at
|
|
// the end of the sequence.
|
|
if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
|
|
// Try replacing upper bits with 1.
|
|
uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
|
|
TmpSeq.clear();
|
|
generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement.
|
|
if ((TmpSeq.size() + 1) < Res.size() ||
|
|
(Res.empty() && TmpSeq.size() < 8)) {
|
|
TmpSeq.emplace_back(RISCV::ADD_UW, 0);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace llvm::RISCVMatInt {
|
|
InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
|
|
RISCVMatInt::InstSeq Res;
|
|
generateInstSeqImpl(Val, STI, Res);
|
|
|
|
// If the low 12 bits are non-zero, the first expansion may end with an ADDI
|
|
// or ADDIW. If there are trailing zeros, try generating a sign extended
|
|
// constant with no trailing zeros and use a final SLLI to restore them.
|
|
if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
|
|
unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
|
|
int64_t ShiftedVal = Val >> TrailingZeros;
|
|
// If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
|
|
// its more compressible. But only if LUI+ADDI(W) isn't fusable.
|
|
// NOTE: We don't check for C extension to minimize differences in generated
|
|
// code.
|
|
bool IsShiftedCompressible =
|
|
isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement.
|
|
if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
|
|
TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
|
|
// If we have a 1 or 2 instruction sequence this is the best we can do. This
|
|
// will always be true for RV32 and will often be true for RV64.
|
|
if (Res.size() <= 2)
|
|
return Res;
|
|
|
|
assert(STI.hasFeature(RISCV::Feature64Bit) &&
|
|
"Expected RV32 to only need 2 instructions");
|
|
|
|
// If the lower 13 bits are something like 0x17ff, try to add 1 to change the
|
|
// lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
|
|
// of the sequence. Call generateInstSeqImpl on the new constant which may
|
|
// subtract 0xfffffffffffff800 to create another ADDI. This will leave a
|
|
// constant with more than 12 trailing zeros for the next recursive step.
|
|
if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
|
|
int64_t Imm12 = -(0x800 - (Val & 0xfff));
|
|
int64_t AdjustedVal = Val - Imm12;
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement.
|
|
if ((TmpSeq.size() + 1) < Res.size()) {
|
|
TmpSeq.emplace_back(RISCV::ADDI, Imm12);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
|
|
// If the constant is positive we might be able to generate a shifted constant
|
|
// with no leading zeros and use a final SRLI to restore them.
|
|
if (Val > 0 && Res.size() > 2) {
|
|
generateInstSeqLeadingZeros(Val, STI, Res);
|
|
}
|
|
|
|
// If the constant is negative, trying inverting and using our trailing zero
|
|
// optimizations. Use an xori to invert the final value.
|
|
if (Val < 0 && Res.size() > 3) {
|
|
uint64_t InvertedVal = ~(uint64_t)Val;
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
|
|
|
|
// Keep it if we found a sequence that is smaller after inverting.
|
|
if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
|
|
TmpSeq.emplace_back(RISCV::XORI, -1);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
|
|
// If the Low and High halves are the same, use pack. The pack instruction
|
|
// packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
|
|
// lower half and rs2 in the upper half.
|
|
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
|
|
int64_t LoVal = SignExtend64<32>(Val);
|
|
int64_t HiVal = SignExtend64<32>(Val >> 32);
|
|
if (LoVal == HiVal) {
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(LoVal, STI, TmpSeq);
|
|
if ((TmpSeq.size() + 1) < Res.size()) {
|
|
TmpSeq.emplace_back(RISCV::PACK, 0);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform optimization with BSETI in the Zbs extension.
|
|
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
|
|
// Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to zero.
|
|
// Xor that with original value to get which bits should be set by BSETI.
|
|
uint64_t Lo = Val & 0x7fffffff;
|
|
uint64_t Hi = Val ^ Lo;
|
|
assert(Hi != 0);
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
|
|
if (Lo != 0)
|
|
generateInstSeqImpl(Lo, STI, TmpSeq);
|
|
|
|
if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
|
|
do {
|
|
TmpSeq.emplace_back(RISCV::BSETI, llvm::countr_zero(Hi));
|
|
Hi &= (Hi - 1); // Clear lowest set bit.
|
|
} while (Hi != 0);
|
|
Res = TmpSeq;
|
|
}
|
|
|
|
// Fold LI 1 + SLLI into BSETI.
|
|
if (Res[0].getOpcode() == RISCV::ADDI && Res[0].getImm() == 1 &&
|
|
Res[1].getOpcode() == RISCV::SLLI) {
|
|
Res.erase(Res.begin()); // Remove ADDI.
|
|
Res.front() = Inst(RISCV::BSETI, Res.front().getImm()); // Patch SLLI.
|
|
}
|
|
}
|
|
|
|
// Perform optimization with BCLRI in the Zbs extension.
|
|
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
|
|
// Create a simm32 value for LUI+ADDIW by forcing the upper 33 bits to one.
|
|
// Xor that with original value to get which bits should be cleared by
|
|
// BCLRI.
|
|
uint64_t Lo = Val | 0xffffffff80000000;
|
|
uint64_t Hi = Val ^ Lo;
|
|
assert(Hi != 0);
|
|
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(Lo, STI, TmpSeq);
|
|
|
|
if (TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
|
|
do {
|
|
TmpSeq.emplace_back(RISCV::BCLRI, llvm::countr_zero(Hi));
|
|
Hi &= (Hi - 1); // Clear lowest set bit.
|
|
} while (Hi != 0);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
|
|
// Perform optimization with SH*ADD in the Zba extension.
|
|
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
|
|
int64_t Div = 0;
|
|
unsigned Opc = 0;
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
// Select the opcode and divisor.
|
|
if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
|
|
Div = 3;
|
|
Opc = RISCV::SH1ADD;
|
|
} else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
|
|
Div = 5;
|
|
Opc = RISCV::SH2ADD;
|
|
} else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
|
|
Div = 9;
|
|
Opc = RISCV::SH3ADD;
|
|
}
|
|
// Build the new instruction sequence.
|
|
if (Div > 0) {
|
|
generateInstSeqImpl(Val / Div, STI, TmpSeq);
|
|
if ((TmpSeq.size() + 1) < Res.size()) {
|
|
TmpSeq.emplace_back(Opc, 0);
|
|
Res = TmpSeq;
|
|
}
|
|
} else {
|
|
// Try to use LUI+SH*ADD+ADDI.
|
|
int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
|
|
int64_t Lo12 = SignExtend64<12>(Val);
|
|
Div = 0;
|
|
if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
|
|
Div = 3;
|
|
Opc = RISCV::SH1ADD;
|
|
} else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
|
|
Div = 5;
|
|
Opc = RISCV::SH2ADD;
|
|
} else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
|
|
Div = 9;
|
|
Opc = RISCV::SH3ADD;
|
|
}
|
|
// Build the new instruction sequence.
|
|
if (Div > 0) {
|
|
// For Val that has zero Lo12 (implies Val equals to Hi52) should has
|
|
// already been processed to LUI+SH*ADD by previous optimization.
|
|
assert(Lo12 != 0 &&
|
|
"unexpected instruction sequence for immediate materialisation");
|
|
assert(TmpSeq.empty() && "Expected empty TmpSeq");
|
|
generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
|
|
if ((TmpSeq.size() + 2) < Res.size()) {
|
|
TmpSeq.emplace_back(Opc, 0);
|
|
TmpSeq.emplace_back(RISCV::ADDI, Lo12);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform optimization with rori in the Zbb and th.srri in the XTheadBb
|
|
// extension.
|
|
if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
|
|
STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
|
|
if (unsigned Rotate = extractRotateInfo(Val)) {
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
|
|
assert(isInt<12>(NegImm12));
|
|
TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
|
|
TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
|
|
? RISCV::RORI
|
|
: RISCV::TH_SRRI,
|
|
Rotate);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
void generateMCInstSeq(int64_t Val, const MCSubtargetInfo &STI,
|
|
MCRegister DestReg, SmallVectorImpl<MCInst> &Insts) {
|
|
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, STI);
|
|
|
|
MCRegister SrcReg = RISCV::X0;
|
|
for (RISCVMatInt::Inst &Inst : Seq) {
|
|
switch (Inst.getOpndKind()) {
|
|
case RISCVMatInt::Imm:
|
|
Insts.push_back(MCInstBuilder(Inst.getOpcode())
|
|
.addReg(DestReg)
|
|
.addImm(Inst.getImm()));
|
|
break;
|
|
case RISCVMatInt::RegX0:
|
|
Insts.push_back(MCInstBuilder(Inst.getOpcode())
|
|
.addReg(DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(RISCV::X0));
|
|
break;
|
|
case RISCVMatInt::RegReg:
|
|
Insts.push_back(MCInstBuilder(Inst.getOpcode())
|
|
.addReg(DestReg)
|
|
.addReg(SrcReg)
|
|
.addReg(SrcReg));
|
|
break;
|
|
case RISCVMatInt::RegImm:
|
|
Insts.push_back(MCInstBuilder(Inst.getOpcode())
|
|
.addReg(DestReg)
|
|
.addReg(SrcReg)
|
|
.addImm(Inst.getImm()));
|
|
break;
|
|
}
|
|
|
|
// Only the first instruction has X0 as its source.
|
|
SrcReg = DestReg;
|
|
}
|
|
}
|
|
|
|
InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
|
|
unsigned &ShiftAmt, unsigned &AddOpc) {
|
|
int64_t LoVal = SignExtend64<32>(Val);
|
|
if (LoVal == 0)
|
|
return RISCVMatInt::InstSeq();
|
|
|
|
// Subtract the LoVal to emulate the effect of the final ADD.
|
|
uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
|
|
assert(Tmp != 0);
|
|
|
|
// Use trailing zero counts to figure how far we need to shift LoVal to line
|
|
// up with the remaining constant.
|
|
// TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
|
|
// final constant come from LoVal.
|
|
unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
|
|
unsigned TzHi = llvm::countr_zero(Tmp);
|
|
assert(TzLo < 32 && TzHi >= 32);
|
|
ShiftAmt = TzHi - TzLo;
|
|
AddOpc = RISCV::ADD;
|
|
|
|
if (Tmp == ((uint64_t)LoVal << ShiftAmt))
|
|
return RISCVMatInt::generateInstSeq(LoVal, STI);
|
|
|
|
// If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
|
|
if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
|
|
ShiftAmt = 32;
|
|
AddOpc = RISCV::ADD_UW;
|
|
return RISCVMatInt::generateInstSeq(LoVal, STI);
|
|
}
|
|
|
|
return RISCVMatInt::InstSeq();
|
|
}
|
|
|
|
int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
|
|
bool CompressionCost, bool FreeZeroes) {
|
|
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
|
|
bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
|
|
STI.hasFeature(RISCV::FeatureStdExtZca));
|
|
int PlatRegSize = IsRV64 ? 64 : 32;
|
|
|
|
// Split the constant into platform register sized chunks, and calculate cost
|
|
// of each chunk.
|
|
int Cost = 0;
|
|
for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
|
|
APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
|
|
if (FreeZeroes && Chunk.getSExtValue() == 0)
|
|
continue;
|
|
InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
|
|
Cost += getInstSeqCost(MatSeq, HasRVC);
|
|
}
|
|
return std::max(FreeZeroes ? 0 : 1, Cost);
|
|
}
|
|
|
|
OpndKind Inst::getOpndKind() const {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode!");
|
|
case RISCV::LUI:
|
|
case RISCV::QC_LI:
|
|
case RISCV::QC_E_LI:
|
|
return RISCVMatInt::Imm;
|
|
case RISCV::ADD_UW:
|
|
return RISCVMatInt::RegX0;
|
|
case RISCV::SH1ADD:
|
|
case RISCV::SH2ADD:
|
|
case RISCV::SH3ADD:
|
|
case RISCV::PACK:
|
|
return RISCVMatInt::RegReg;
|
|
case RISCV::ADDI:
|
|
case RISCV::ADDIW:
|
|
case RISCV::XORI:
|
|
case RISCV::SLLI:
|
|
case RISCV::SRLI:
|
|
case RISCV::SLLI_UW:
|
|
case RISCV::RORI:
|
|
case RISCV::BSETI:
|
|
case RISCV::BCLRI:
|
|
case RISCV::TH_SRRI:
|
|
return RISCVMatInt::RegImm;
|
|
}
|
|
}
|
|
|
|
} // namespace llvm::RISCVMatInt
|