llvm-project/clang/lib/StaticAnalyzer/Checkers/StackAddrEscapeChecker.cpp
Michael Flanders 560149b5e3
[analyzer] Reapply recent stack addr escape checker changes + buildbot fix (#126620)
Reapplying changes from https://github.com/llvm/llvm-project/pull/125638
after buildbot failures.

Buildbot failures fixed in 029e7e98dc9956086adc6c1dfb0c655a273fbee6,
latest commit on this PR. It was a problem with a declared class member
with same name as its type. Sorry!
2025-02-11 12:54:30 +00:00

631 lines
24 KiB
C++

//=== StackAddrEscapeChecker.cpp ----------------------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines stack address leak checker, which checks if an invalid
// stack address is stored into a global or heap location. See CERT DCL30-C.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/SourceManager.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
namespace {
class StackAddrEscapeChecker
: public Checker<check::PreCall, check::PreStmt<ReturnStmt>,
check::EndFunction> {
mutable IdentifierInfo *dispatch_semaphore_tII = nullptr;
mutable std::unique_ptr<BugType> BT_stackleak;
mutable std::unique_ptr<BugType> BT_returnstack;
mutable std::unique_ptr<BugType> BT_capturedstackasync;
mutable std::unique_ptr<BugType> BT_capturedstackret;
public:
enum CheckKind {
CK_StackAddrEscapeChecker,
CK_StackAddrAsyncEscapeChecker,
CK_NumCheckKinds
};
bool ChecksEnabled[CK_NumCheckKinds] = {false};
CheckerNameRef CheckNames[CK_NumCheckKinds];
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const;
void checkEndFunction(const ReturnStmt *RS, CheckerContext &Ctx) const;
private:
void checkReturnedBlockCaptures(const BlockDataRegion &B,
CheckerContext &C) const;
void checkAsyncExecutedBlockCaptures(const BlockDataRegion &B,
CheckerContext &C) const;
void EmitReturnLeakError(CheckerContext &C, const MemRegion *LeakedRegion,
const Expr *RetE) const;
bool isSemaphoreCaptured(const BlockDecl &B) const;
static SourceRange genName(raw_ostream &os, const MemRegion *R,
ASTContext &Ctx);
static SmallVector<const MemRegion *, 4>
getCapturedStackRegions(const BlockDataRegion &B, CheckerContext &C);
static bool isNotInCurrentFrame(const MemRegion *R, CheckerContext &C);
};
} // namespace
SourceRange StackAddrEscapeChecker::genName(raw_ostream &os, const MemRegion *R,
ASTContext &Ctx) {
// Get the base region, stripping away fields and elements.
R = R->getBaseRegion();
SourceManager &SM = Ctx.getSourceManager();
SourceRange range;
os << "Address of ";
// Check if the region is a compound literal.
if (const auto *CR = dyn_cast<CompoundLiteralRegion>(R)) {
const CompoundLiteralExpr *CL = CR->getLiteralExpr();
os << "stack memory associated with a compound literal "
"declared on line "
<< SM.getExpansionLineNumber(CL->getBeginLoc());
range = CL->getSourceRange();
} else if (const auto *AR = dyn_cast<AllocaRegion>(R)) {
const Expr *ARE = AR->getExpr();
SourceLocation L = ARE->getBeginLoc();
range = ARE->getSourceRange();
os << "stack memory allocated by call to alloca() on line "
<< SM.getExpansionLineNumber(L);
} else if (const auto *BR = dyn_cast<BlockDataRegion>(R)) {
const BlockDecl *BD = BR->getCodeRegion()->getDecl();
SourceLocation L = BD->getBeginLoc();
range = BD->getSourceRange();
os << "stack-allocated block declared on line "
<< SM.getExpansionLineNumber(L);
} else if (const auto *VR = dyn_cast<VarRegion>(R)) {
os << "stack memory associated with local variable '" << VR->getString()
<< '\'';
range = VR->getDecl()->getSourceRange();
} else if (const auto *LER = dyn_cast<CXXLifetimeExtendedObjectRegion>(R)) {
QualType Ty = LER->getValueType().getLocalUnqualifiedType();
os << "stack memory associated with temporary object of type '";
Ty.print(os, Ctx.getPrintingPolicy());
os << "' lifetime extended by local variable";
if (const IdentifierInfo *ID = LER->getExtendingDecl()->getIdentifier())
os << " '" << ID->getName() << '\'';
range = LER->getExpr()->getSourceRange();
} else if (const auto *TOR = dyn_cast<CXXTempObjectRegion>(R)) {
QualType Ty = TOR->getValueType().getLocalUnqualifiedType();
os << "stack memory associated with temporary object of type '";
Ty.print(os, Ctx.getPrintingPolicy());
os << "'";
range = TOR->getExpr()->getSourceRange();
} else {
llvm_unreachable("Invalid region in ReturnStackAddressChecker.");
}
return range;
}
bool StackAddrEscapeChecker::isNotInCurrentFrame(const MemRegion *R,
CheckerContext &C) {
const StackSpaceRegion *S = cast<StackSpaceRegion>(R->getMemorySpace());
return S->getStackFrame() != C.getStackFrame();
}
bool StackAddrEscapeChecker::isSemaphoreCaptured(const BlockDecl &B) const {
if (!dispatch_semaphore_tII)
dispatch_semaphore_tII = &B.getASTContext().Idents.get("dispatch_semaphore_t");
for (const auto &C : B.captures()) {
const auto *T = C.getVariable()->getType()->getAs<TypedefType>();
if (T && T->getDecl()->getIdentifier() == dispatch_semaphore_tII)
return true;
}
return false;
}
SmallVector<const MemRegion *, 4>
StackAddrEscapeChecker::getCapturedStackRegions(const BlockDataRegion &B,
CheckerContext &C) {
SmallVector<const MemRegion *, 4> Regions;
for (auto Var : B.referenced_vars()) {
SVal Val = C.getState()->getSVal(Var.getCapturedRegion());
const MemRegion *Region = Val.getAsRegion();
if (Region && isa<StackSpaceRegion>(Region->getMemorySpace()))
Regions.push_back(Region);
}
return Regions;
}
static void EmitReturnedAsPartOfError(llvm::raw_ostream &OS, SVal ReturnedVal,
const MemRegion *LeakedRegion) {
if (const MemRegion *ReturnedRegion = ReturnedVal.getAsRegion()) {
if (isa<BlockDataRegion>(ReturnedRegion)) {
OS << " is captured by a returned block";
return;
}
}
// Generic message
OS << " returned to caller";
}
void StackAddrEscapeChecker::EmitReturnLeakError(CheckerContext &C,
const MemRegion *R,
const Expr *RetE) const {
ExplodedNode *N = C.generateNonFatalErrorNode();
if (!N)
return;
if (!BT_returnstack)
BT_returnstack = std::make_unique<BugType>(
CheckNames[CK_StackAddrEscapeChecker],
"Return of address to stack-allocated memory");
// Generate a report for this bug.
SmallString<128> buf;
llvm::raw_svector_ostream os(buf);
// Error message formatting
SourceRange range = genName(os, R, C.getASTContext());
EmitReturnedAsPartOfError(os, C.getSVal(RetE), R);
auto report =
std::make_unique<PathSensitiveBugReport>(*BT_returnstack, os.str(), N);
report->addRange(RetE->getSourceRange());
if (range.isValid())
report->addRange(range);
C.emitReport(std::move(report));
}
void StackAddrEscapeChecker::checkAsyncExecutedBlockCaptures(
const BlockDataRegion &B, CheckerContext &C) const {
// There is a not-too-uncommon idiom
// where a block passed to dispatch_async captures a semaphore
// and then the thread (which called dispatch_async) is blocked on waiting
// for the completion of the execution of the block
// via dispatch_semaphore_wait. To avoid false-positives (for now)
// we ignore all the blocks which have captured
// a variable of the type "dispatch_semaphore_t".
if (isSemaphoreCaptured(*B.getDecl()))
return;
for (const MemRegion *Region : getCapturedStackRegions(B, C)) {
// The block passed to dispatch_async may capture another block
// created on the stack. However, there is no leak in this situaton,
// no matter if ARC or no ARC is enabled:
// dispatch_async copies the passed "outer" block (via Block_copy)
// and if the block has captured another "inner" block,
// the "inner" block will be copied as well.
if (isa<BlockDataRegion>(Region))
continue;
ExplodedNode *N = C.generateNonFatalErrorNode();
if (!N)
continue;
if (!BT_capturedstackasync)
BT_capturedstackasync = std::make_unique<BugType>(
CheckNames[CK_StackAddrAsyncEscapeChecker],
"Address of stack-allocated memory is captured");
SmallString<128> Buf;
llvm::raw_svector_ostream Out(Buf);
SourceRange Range = genName(Out, Region, C.getASTContext());
Out << " is captured by an asynchronously-executed block";
auto Report = std::make_unique<PathSensitiveBugReport>(
*BT_capturedstackasync, Out.str(), N);
if (Range.isValid())
Report->addRange(Range);
C.emitReport(std::move(Report));
}
}
void StackAddrEscapeChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
if (!ChecksEnabled[CK_StackAddrAsyncEscapeChecker])
return;
if (!Call.isGlobalCFunction("dispatch_after") &&
!Call.isGlobalCFunction("dispatch_async"))
return;
for (unsigned Idx = 0, NumArgs = Call.getNumArgs(); Idx < NumArgs; ++Idx) {
if (const BlockDataRegion *B = dyn_cast_or_null<BlockDataRegion>(
Call.getArgSVal(Idx).getAsRegion()))
checkAsyncExecutedBlockCaptures(*B, C);
}
}
/// A visitor made for use with a ScanReachableSymbols scanner, used
/// for finding stack regions within an SVal that live on the current
/// stack frame of the given checker context. This visitor excludes
/// NonParamVarRegion that data is bound to in a BlockDataRegion's
/// bindings, since these are likely uninteresting, e.g., in case a
/// temporary is constructed on the stack, but it captures values
/// that would leak.
class FindStackRegionsSymbolVisitor final : public SymbolVisitor {
CheckerContext &Ctxt;
const StackFrameContext *PoppedStackFrame;
SmallVectorImpl<const MemRegion *> &EscapingStackRegions;
public:
explicit FindStackRegionsSymbolVisitor(
CheckerContext &Ctxt,
SmallVectorImpl<const MemRegion *> &StorageForStackRegions)
: Ctxt(Ctxt), PoppedStackFrame(Ctxt.getStackFrame()),
EscapingStackRegions(StorageForStackRegions) {}
bool VisitSymbol(SymbolRef sym) override { return true; }
bool VisitMemRegion(const MemRegion *MR) override {
SaveIfEscapes(MR);
if (const BlockDataRegion *BDR = MR->getAs<BlockDataRegion>())
return VisitBlockDataRegionCaptures(BDR);
return true;
}
private:
void SaveIfEscapes(const MemRegion *MR) {
const StackSpaceRegion *SSR =
MR->getMemorySpace()->getAs<StackSpaceRegion>();
if (SSR && SSR->getStackFrame() == PoppedStackFrame)
EscapingStackRegions.push_back(MR);
}
bool VisitBlockDataRegionCaptures(const BlockDataRegion *BDR) {
for (auto Var : BDR->referenced_vars()) {
SVal Val = Ctxt.getState()->getSVal(Var.getCapturedRegion());
const MemRegion *Region = Val.getAsRegion();
if (Region) {
SaveIfEscapes(Region);
VisitMemRegion(Region);
}
}
return false;
}
};
/// Given some memory regions that are flagged by FindStackRegionsSymbolVisitor,
/// this function filters out memory regions that are being returned that are
/// likely not true leaks:
/// 1. If returning a block data region that has stack memory space
/// 2. If returning a constructed object that has stack memory space
static SmallVector<const MemRegion *> FilterReturnExpressionLeaks(
const SmallVectorImpl<const MemRegion *> &MaybeEscaped, CheckerContext &C,
const Expr *RetE, SVal &RetVal) {
SmallVector<const MemRegion *> WillEscape;
const MemRegion *RetRegion = RetVal.getAsRegion();
// Returning a record by value is fine. (In this case, the returned
// expression will be a copy-constructor, possibly wrapped in an
// ExprWithCleanups node.)
if (const ExprWithCleanups *Cleanup = dyn_cast<ExprWithCleanups>(RetE))
RetE = Cleanup->getSubExpr();
bool IsConstructExpr =
isa<CXXConstructExpr>(RetE) && RetE->getType()->isRecordType();
// The CK_CopyAndAutoreleaseBlockObject cast causes the block to be copied
// so the stack address is not escaping here.
bool IsCopyAndAutoreleaseBlockObj = false;
if (const auto *ICE = dyn_cast<ImplicitCastExpr>(RetE)) {
IsCopyAndAutoreleaseBlockObj =
isa_and_nonnull<BlockDataRegion>(RetRegion) &&
ICE->getCastKind() == CK_CopyAndAutoreleaseBlockObject;
}
for (const MemRegion *MR : MaybeEscaped) {
if (RetRegion == MR && (IsCopyAndAutoreleaseBlockObj || IsConstructExpr))
continue;
WillEscape.push_back(MR);
}
return WillEscape;
}
/// For use in finding regions that live on the checker context's current
/// stack frame, deep in the SVal representing the return value.
static SmallVector<const MemRegion *>
FindEscapingStackRegions(CheckerContext &C, const Expr *RetE, SVal RetVal) {
SmallVector<const MemRegion *> FoundStackRegions;
FindStackRegionsSymbolVisitor Finder(C, FoundStackRegions);
ScanReachableSymbols Scanner(C.getState(), Finder);
Scanner.scan(RetVal);
return FilterReturnExpressionLeaks(FoundStackRegions, C, RetE, RetVal);
}
void StackAddrEscapeChecker::checkPreStmt(const ReturnStmt *RS,
CheckerContext &C) const {
if (!ChecksEnabled[CK_StackAddrEscapeChecker])
return;
const Expr *RetE = RS->getRetValue();
if (!RetE)
return;
RetE = RetE->IgnoreParens();
SVal V = C.getSVal(RetE);
SmallVector<const MemRegion *> EscapedStackRegions =
FindEscapingStackRegions(C, RetE, V);
for (const MemRegion *ER : EscapedStackRegions)
EmitReturnLeakError(C, ER, RetE);
}
static const MemSpaceRegion *getStackOrGlobalSpaceRegion(const MemRegion *R) {
assert(R);
if (const auto *MemSpace = R->getMemorySpace()) {
if (const auto *SSR = MemSpace->getAs<StackSpaceRegion>())
return SSR;
if (const auto *GSR = MemSpace->getAs<GlobalsSpaceRegion>())
return GSR;
}
// If R describes a lambda capture, it will be a symbolic region
// referring to a field region of another symbolic region.
if (const auto *SymReg = R->getBaseRegion()->getAs<SymbolicRegion>()) {
if (const auto *OriginReg = SymReg->getSymbol()->getOriginRegion())
return getStackOrGlobalSpaceRegion(OriginReg);
}
return nullptr;
}
static const MemRegion *getOriginBaseRegion(const MemRegion *Reg) {
Reg = Reg->getBaseRegion();
while (const auto *SymReg = dyn_cast<SymbolicRegion>(Reg)) {
const auto *OriginReg = SymReg->getSymbol()->getOriginRegion();
if (!OriginReg)
break;
Reg = OriginReg->getBaseRegion();
}
return Reg;
}
static std::optional<std::string> printReferrer(const MemRegion *Referrer) {
assert(Referrer);
const StringRef ReferrerMemorySpace = [](const MemSpaceRegion *Space) {
if (isa<StaticGlobalSpaceRegion>(Space))
return "static";
if (isa<GlobalsSpaceRegion>(Space))
return "global";
assert(isa<StackSpaceRegion>(Space));
// This case covers top-level and inlined analyses.
return "caller";
}(getStackOrGlobalSpaceRegion(Referrer));
while (!Referrer->canPrintPretty()) {
if (const auto *SymReg = dyn_cast<SymbolicRegion>(Referrer);
SymReg && SymReg->getSymbol()->getOriginRegion()) {
Referrer = SymReg->getSymbol()->getOriginRegion()->getBaseRegion();
} else if (isa<CXXThisRegion>(Referrer)) {
// Skip members of a class, it is handled in CheckExprLifetime.cpp as
// warn_bind_ref_member_to_parameter or
// warn_init_ptr_member_to_parameter_addr
return std::nullopt;
} else if (isa<AllocaRegion>(Referrer)) {
// Skip alloca() regions, they indicate advanced memory management
// and higher likelihood of CSA false positives.
return std::nullopt;
} else {
assert(false && "Unexpected referrer region type.");
return std::nullopt;
}
}
assert(Referrer);
assert(Referrer->canPrintPretty());
std::string buf;
llvm::raw_string_ostream os(buf);
os << ReferrerMemorySpace << " variable ";
Referrer->printPretty(os);
return buf;
}
/// Check whether \p Region refers to a freshly minted symbol after an opaque
/// function call.
static bool isInvalidatedSymbolRegion(const MemRegion *Region) {
const auto *SymReg = Region->getAs<SymbolicRegion>();
if (!SymReg)
return false;
SymbolRef Symbol = SymReg->getSymbol();
const auto *DerS = dyn_cast<SymbolDerived>(Symbol);
return DerS && isa_and_nonnull<SymbolConjured>(DerS->getParentSymbol());
}
void StackAddrEscapeChecker::checkEndFunction(const ReturnStmt *RS,
CheckerContext &Ctx) const {
if (!ChecksEnabled[CK_StackAddrEscapeChecker])
return;
ExplodedNode *Node = Ctx.getPredecessor();
bool ExitingTopFrame =
Ctx.getPredecessor()->getLocationContext()->inTopFrame();
if (ExitingTopFrame &&
Node->getLocation().getTag() == ExprEngine::cleanupNodeTag() &&
Node->getFirstPred()) {
// When finishing analysis of a top-level function, engine proactively
// removes dead symbols thus preventing this checker from looking through
// the output parameters. Take 1 step back, to the node where these symbols
// and their bindings are still present
Node = Node->getFirstPred();
}
// Iterate over all bindings to global variables and see if it contains
// a memory region in the stack space.
class CallBack : public StoreManager::BindingsHandler {
private:
CheckerContext &Ctx;
const StackFrameContext *PoppedFrame;
const bool TopFrame;
/// Look for stack variables referring to popped stack variables.
/// Returns true only if it found some dangling stack variables
/// referred by an other stack variable from different stack frame.
bool checkForDanglingStackVariable(const MemRegion *Referrer,
const MemRegion *Referred) {
const auto *ReferrerMemSpace = getStackOrGlobalSpaceRegion(Referrer);
const auto *ReferredMemSpace =
Referred->getMemorySpace()->getAs<StackSpaceRegion>();
if (!ReferrerMemSpace || !ReferredMemSpace)
return false;
const auto *ReferrerStackSpace =
ReferrerMemSpace->getAs<StackSpaceRegion>();
if (!ReferrerStackSpace)
return false;
if (const auto *ReferredFrame = ReferredMemSpace->getStackFrame();
ReferredFrame != PoppedFrame) {
return false;
}
if (ReferrerStackSpace->getStackFrame()->isParentOf(PoppedFrame)) {
V.emplace_back(Referrer, Referred);
return true;
}
if (isa<StackArgumentsSpaceRegion>(ReferrerMemSpace) &&
// Not a simple ptr (int*) but something deeper, e.g. int**
isa<SymbolicRegion>(Referrer->getBaseRegion()) &&
ReferrerStackSpace->getStackFrame() == PoppedFrame && TopFrame) {
// Output parameter of a top-level function
V.emplace_back(Referrer, Referred);
return true;
}
return false;
}
// Keep track of the variables that were invalidated through an opaque
// function call. Even if the initial values of such variables were bound to
// an address of a local variable, we cannot claim anything now, at the
// function exit, so skip them to avoid false positives.
void recordInInvalidatedRegions(const MemRegion *Region) {
if (isInvalidatedSymbolRegion(Region))
ExcludedRegions.insert(getOriginBaseRegion(Region));
}
public:
SmallVector<std::pair<const MemRegion *, const MemRegion *>, 10> V;
// ExcludedRegions are skipped from reporting.
// I.e., if a referrer in this set, skip the related bug report.
// It is useful to avoid false positive for the variables that were
// reset to a conjured value after an opaque function call.
llvm::SmallPtrSet<const MemRegion *, 4> ExcludedRegions;
CallBack(CheckerContext &CC, bool TopFrame)
: Ctx(CC), PoppedFrame(CC.getStackFrame()), TopFrame(TopFrame) {}
bool HandleBinding(StoreManager &SMgr, Store S, const MemRegion *Region,
SVal Val) override {
recordInInvalidatedRegions(Region);
const MemRegion *VR = Val.getAsRegion();
if (!VR)
return true;
if (checkForDanglingStackVariable(Region, VR))
return true;
// Check the globals for the same.
if (!isa_and_nonnull<GlobalsSpaceRegion>(
getStackOrGlobalSpaceRegion(Region)))
return true;
if (VR && VR->hasStackStorage() && !isNotInCurrentFrame(VR, Ctx))
V.emplace_back(Region, VR);
return true;
}
};
CallBack Cb(Ctx, ExitingTopFrame);
ProgramStateRef State = Node->getState();
State->getStateManager().getStoreManager().iterBindings(State->getStore(),
Cb);
if (Cb.V.empty())
return;
// Generate an error node.
ExplodedNode *N = Ctx.generateNonFatalErrorNode(State, Node);
if (!N)
return;
if (!BT_stackleak)
BT_stackleak =
std::make_unique<BugType>(CheckNames[CK_StackAddrEscapeChecker],
"Stack address leaks outside of stack frame");
for (const auto &P : Cb.V) {
const MemRegion *Referrer = P.first->getBaseRegion();
const MemRegion *Referred = P.second;
if (Cb.ExcludedRegions.contains(getOriginBaseRegion(Referrer))) {
continue;
}
// Generate a report for this bug.
const StringRef CommonSuffix =
" upon returning to the caller. This will be a dangling reference";
SmallString<128> Buf;
llvm::raw_svector_ostream Out(Buf);
const SourceRange Range = genName(Out, Referred, Ctx.getASTContext());
if (isa<CXXTempObjectRegion, CXXLifetimeExtendedObjectRegion>(Referrer)) {
Out << " is still referred to by a temporary object on the stack"
<< CommonSuffix;
auto Report =
std::make_unique<PathSensitiveBugReport>(*BT_stackleak, Out.str(), N);
if (Range.isValid())
Report->addRange(Range);
Ctx.emitReport(std::move(Report));
return;
}
auto ReferrerVariable = printReferrer(Referrer);
if (!ReferrerVariable) {
continue;
}
Out << " is still referred to by the " << *ReferrerVariable << CommonSuffix;
auto Report =
std::make_unique<PathSensitiveBugReport>(*BT_stackleak, Out.str(), N);
if (Range.isValid())
Report->addRange(Range);
Ctx.emitReport(std::move(Report));
}
}
void ento::registerStackAddrEscapeBase(CheckerManager &mgr) {
mgr.registerChecker<StackAddrEscapeChecker>();
}
bool ento::shouldRegisterStackAddrEscapeBase(const CheckerManager &mgr) {
return true;
}
#define REGISTER_CHECKER(name) \
void ento::register##name(CheckerManager &Mgr) { \
StackAddrEscapeChecker *Chk = Mgr.getChecker<StackAddrEscapeChecker>(); \
Chk->ChecksEnabled[StackAddrEscapeChecker::CK_##name] = true; \
Chk->CheckNames[StackAddrEscapeChecker::CK_##name] = \
Mgr.getCurrentCheckerName(); \
} \
\
bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
REGISTER_CHECKER(StackAddrEscapeChecker)
REGISTER_CHECKER(StackAddrAsyncEscapeChecker)