llvm-project/llvm/lib/DebugInfo/GSYM/GsymCreator.cpp
alx32 5147e5941d
[GSYM] Callsites: Add data format support and loading from YAML (#109781)
This PR adds support in the gSYM format for call site information and
adds support for loading call sites from a YAML file. The support for
YAML input is mostly for testing purposes - so we have a way to test the
functionality.

Note that this data is not currently used in the gSYM tooling - the
logic to use call sites will be added in a later PR.

The reason why we need call site information in gSYM files is so that we
can support better call stack function disambiguation in the case where
multiple functions have been merged due to optimization (linker ICF).
When resolving a merged function on the callstack, we can use the call
site information of the calling function to narrow down the actual
function that is being called, from the set of all merged functions.

See [this
RFC](https://discourse.llvm.org/t/rfc-extending-gsym-format-with-call-site-information-for-merged-function-disambiguation/80682)
for more details on this change.
2024-11-26 16:07:40 -08:00

614 lines
23 KiB
C++

//===- GsymCreator.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/GSYM/GsymCreator.h"
#include "llvm/DebugInfo/GSYM/FileWriter.h"
#include "llvm/DebugInfo/GSYM/Header.h"
#include "llvm/DebugInfo/GSYM/LineTable.h"
#include "llvm/DebugInfo/GSYM/OutputAggregator.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <functional>
#include <vector>
using namespace llvm;
using namespace gsym;
GsymCreator::GsymCreator(bool Quiet)
: StrTab(StringTableBuilder::ELF), Quiet(Quiet) {
insertFile(StringRef());
}
uint32_t GsymCreator::insertFile(StringRef Path, llvm::sys::path::Style Style) {
llvm::StringRef directory = llvm::sys::path::parent_path(Path, Style);
llvm::StringRef filename = llvm::sys::path::filename(Path, Style);
// We must insert the strings first, then call the FileEntry constructor.
// If we inline the insertString() function call into the constructor, the
// call order is undefined due to parameter lists not having any ordering
// requirements.
const uint32_t Dir = insertString(directory);
const uint32_t Base = insertString(filename);
return insertFileEntry(FileEntry(Dir, Base));
}
uint32_t GsymCreator::insertFileEntry(FileEntry FE) {
std::lock_guard<std::mutex> Guard(Mutex);
const auto NextIndex = Files.size();
// Find FE in hash map and insert if not present.
auto R = FileEntryToIndex.insert(std::make_pair(FE, NextIndex));
if (R.second)
Files.emplace_back(FE);
return R.first->second;
}
uint32_t GsymCreator::copyFile(const GsymCreator &SrcGC, uint32_t FileIdx) {
// File index zero is reserved for a FileEntry with no directory and no
// filename. Any other file and we need to copy the strings for the directory
// and filename.
if (FileIdx == 0)
return 0;
const FileEntry SrcFE = SrcGC.Files[FileIdx];
// Copy the strings for the file and then add the newly converted file entry.
uint32_t Dir =
SrcFE.Dir == 0
? 0
: StrTab.add(SrcGC.StringOffsetMap.find(SrcFE.Dir)->second);
uint32_t Base = StrTab.add(SrcGC.StringOffsetMap.find(SrcFE.Base)->second);
FileEntry DstFE(Dir, Base);
return insertFileEntry(DstFE);
}
llvm::Error GsymCreator::save(StringRef Path, llvm::endianness ByteOrder,
std::optional<uint64_t> SegmentSize) const {
if (SegmentSize)
return saveSegments(Path, ByteOrder, *SegmentSize);
std::error_code EC;
raw_fd_ostream OutStrm(Path, EC);
if (EC)
return llvm::errorCodeToError(EC);
FileWriter O(OutStrm, ByteOrder);
return encode(O);
}
llvm::Error GsymCreator::encode(FileWriter &O) const {
std::lock_guard<std::mutex> Guard(Mutex);
if (Funcs.empty())
return createStringError(std::errc::invalid_argument,
"no functions to encode");
if (!Finalized)
return createStringError(std::errc::invalid_argument,
"GsymCreator wasn't finalized prior to encoding");
if (Funcs.size() > UINT32_MAX)
return createStringError(std::errc::invalid_argument,
"too many FunctionInfos");
std::optional<uint64_t> BaseAddress = getBaseAddress();
// Base address should be valid if we have any functions.
if (!BaseAddress)
return createStringError(std::errc::invalid_argument,
"invalid base address");
Header Hdr;
Hdr.Magic = GSYM_MAGIC;
Hdr.Version = GSYM_VERSION;
Hdr.AddrOffSize = getAddressOffsetSize();
Hdr.UUIDSize = static_cast<uint8_t>(UUID.size());
Hdr.BaseAddress = *BaseAddress;
Hdr.NumAddresses = static_cast<uint32_t>(Funcs.size());
Hdr.StrtabOffset = 0; // We will fix this up later.
Hdr.StrtabSize = 0; // We will fix this up later.
memset(Hdr.UUID, 0, sizeof(Hdr.UUID));
if (UUID.size() > sizeof(Hdr.UUID))
return createStringError(std::errc::invalid_argument,
"invalid UUID size %u", (uint32_t)UUID.size());
// Copy the UUID value if we have one.
if (UUID.size() > 0)
memcpy(Hdr.UUID, UUID.data(), UUID.size());
// Write out the header.
llvm::Error Err = Hdr.encode(O);
if (Err)
return Err;
const uint64_t MaxAddressOffset = getMaxAddressOffset();
// Write out the address offsets.
O.alignTo(Hdr.AddrOffSize);
for (const auto &FuncInfo : Funcs) {
uint64_t AddrOffset = FuncInfo.startAddress() - Hdr.BaseAddress;
// Make sure we calculated the address offsets byte size correctly by
// verifying the current address offset is within ranges. We have seen bugs
// introduced when the code changes that can cause problems here so it is
// good to catch this during testing.
assert(AddrOffset <= MaxAddressOffset);
(void)MaxAddressOffset;
switch (Hdr.AddrOffSize) {
case 1:
O.writeU8(static_cast<uint8_t>(AddrOffset));
break;
case 2:
O.writeU16(static_cast<uint16_t>(AddrOffset));
break;
case 4:
O.writeU32(static_cast<uint32_t>(AddrOffset));
break;
case 8:
O.writeU64(AddrOffset);
break;
}
}
// Write out all zeros for the AddrInfoOffsets.
O.alignTo(4);
const off_t AddrInfoOffsetsOffset = O.tell();
for (size_t i = 0, n = Funcs.size(); i < n; ++i)
O.writeU32(0);
// Write out the file table
O.alignTo(4);
assert(!Files.empty());
assert(Files[0].Dir == 0);
assert(Files[0].Base == 0);
size_t NumFiles = Files.size();
if (NumFiles > UINT32_MAX)
return createStringError(std::errc::invalid_argument, "too many files");
O.writeU32(static_cast<uint32_t>(NumFiles));
for (auto File : Files) {
O.writeU32(File.Dir);
O.writeU32(File.Base);
}
// Write out the string table.
const off_t StrtabOffset = O.tell();
StrTab.write(O.get_stream());
const off_t StrtabSize = O.tell() - StrtabOffset;
std::vector<uint32_t> AddrInfoOffsets;
// Write out the address infos for each function info.
for (const auto &FuncInfo : Funcs) {
if (Expected<uint64_t> OffsetOrErr = FuncInfo.encode(O))
AddrInfoOffsets.push_back(OffsetOrErr.get());
else
return OffsetOrErr.takeError();
}
// Fixup the string table offset and size in the header
O.fixup32((uint32_t)StrtabOffset, offsetof(Header, StrtabOffset));
O.fixup32((uint32_t)StrtabSize, offsetof(Header, StrtabSize));
// Fixup all address info offsets
uint64_t Offset = 0;
for (auto AddrInfoOffset : AddrInfoOffsets) {
O.fixup32(AddrInfoOffset, AddrInfoOffsetsOffset + Offset);
Offset += 4;
}
return ErrorSuccess();
}
llvm::Error GsymCreator::loadCallSitesFromYAML(StringRef YAMLFile) {
// Use the loader to load call site information from the YAML file.
CallSiteInfoLoader Loader(*this, Funcs);
return Loader.loadYAML(YAMLFile);
}
void GsymCreator::prepareMergedFunctions(OutputAggregator &Out) {
// Nothing to do if we have less than 2 functions.
if (Funcs.size() < 2)
return;
// Sort the function infos by address range first
llvm::sort(Funcs);
std::vector<FunctionInfo> TopLevelFuncs;
// Add the first function info to the top level functions
TopLevelFuncs.emplace_back(std::move(Funcs.front()));
// Now if the next function info has the same address range as the top level,
// then merge it into the top level function, otherwise add it to the top
// level.
for (size_t Idx = 1; Idx < Funcs.size(); ++Idx) {
FunctionInfo &TopFunc = TopLevelFuncs.back();
FunctionInfo &MatchFunc = Funcs[Idx];
if (TopFunc.Range == MatchFunc.Range) {
// Both have the same range - add the 2nd func as a child of the 1st func
if (!TopFunc.MergedFunctions)
TopFunc.MergedFunctions = MergedFunctionsInfo();
// Avoid adding duplicate functions to MergedFunctions. Since functions
// are already ordered within the Funcs array, we can just check equality
// against the last function in the merged array.
else if (TopFunc.MergedFunctions->MergedFunctions.back() == MatchFunc)
continue;
TopFunc.MergedFunctions->MergedFunctions.emplace_back(
std::move(MatchFunc));
} else
// No match, add the function as a top-level function
TopLevelFuncs.emplace_back(std::move(MatchFunc));
}
uint32_t mergedCount = Funcs.size() - TopLevelFuncs.size();
// If any functions were merged, print a message about it.
if (mergedCount != 0)
Out << "Have " << mergedCount
<< " merged functions as children of other functions\n";
std::swap(Funcs, TopLevelFuncs);
}
llvm::Error GsymCreator::finalize(OutputAggregator &Out) {
std::lock_guard<std::mutex> Guard(Mutex);
if (Finalized)
return createStringError(std::errc::invalid_argument, "already finalized");
Finalized = true;
// Don't let the string table indexes change by finalizing in order.
StrTab.finalizeInOrder();
// Remove duplicates function infos that have both entries from debug info
// (DWARF or Breakpad) and entries from the SymbolTable.
//
// Also handle overlapping function. Usually there shouldn't be any, but they
// can and do happen in some rare cases.
//
// (a) (b) (c)
// ^ ^ ^ ^
// |X |Y |X ^ |X
// | | | |Y | ^
// | | | v v |Y
// v v v v
//
// In (a) and (b), Y is ignored and X will be reported for the full range.
// In (c), both functions will be included in the result and lookups for an
// address in the intersection will return Y because of binary search.
//
// Note that in case of (b), we cannot include Y in the result because then
// we wouldn't find any function for range (end of Y, end of X)
// with binary search
const auto NumBefore = Funcs.size();
// Only sort and unique if this isn't a segment. If this is a segment we
// already finalized the main GsymCreator with all of the function infos
// and then the already sorted and uniqued function infos were added to this
// object.
if (!IsSegment) {
if (NumBefore > 1) {
// Sort function infos so we can emit sorted functions.
llvm::sort(Funcs);
std::vector<FunctionInfo> FinalizedFuncs;
FinalizedFuncs.reserve(Funcs.size());
FinalizedFuncs.emplace_back(std::move(Funcs.front()));
for (size_t Idx=1; Idx < NumBefore; ++Idx) {
FunctionInfo &Prev = FinalizedFuncs.back();
FunctionInfo &Curr = Funcs[Idx];
// Empty ranges won't intersect, but we still need to
// catch the case where we have multiple symbols at the
// same address and coalesce them.
const bool ranges_equal = Prev.Range == Curr.Range;
if (ranges_equal || Prev.Range.intersects(Curr.Range)) {
// Overlapping ranges or empty identical ranges.
if (ranges_equal) {
// Same address range. Check if one is from debug
// info and the other is from a symbol table. If
// so, then keep the one with debug info. Our
// sorting guarantees that entries with matching
// address ranges that have debug info are last in
// the sort.
if (!(Prev == Curr)) {
if (Prev.hasRichInfo() && Curr.hasRichInfo())
Out.Report(
"Duplicate address ranges with different debug info.",
[&](raw_ostream &OS) {
OS << "warning: same address range contains "
"different debug "
<< "info. Removing:\n"
<< Prev << "\nIn favor of this one:\n"
<< Curr << "\n";
});
// We want to swap the current entry with the previous since
// later entries with the same range always have more debug info
// or different debug info.
std::swap(Prev, Curr);
}
} else {
Out.Report("Overlapping function ranges", [&](raw_ostream &OS) {
// print warnings about overlaps
OS << "warning: function ranges overlap:\n"
<< Prev << "\n"
<< Curr << "\n";
});
FinalizedFuncs.emplace_back(std::move(Curr));
}
} else {
if (Prev.Range.size() == 0 && Curr.Range.contains(Prev.Range.start())) {
// Symbols on macOS don't have address ranges, so if the range
// doesn't match and the size is zero, then we replace the empty
// symbol function info with the current one.
std::swap(Prev, Curr);
} else {
FinalizedFuncs.emplace_back(std::move(Curr));
}
}
}
std::swap(Funcs, FinalizedFuncs);
}
// If our last function info entry doesn't have a size and if we have valid
// text ranges, we should set the size of the last entry since any search for
// a high address might match our last entry. By fixing up this size, we can
// help ensure we don't cause lookups to always return the last symbol that
// has no size when doing lookups.
if (!Funcs.empty() && Funcs.back().Range.size() == 0 && ValidTextRanges) {
if (auto Range =
ValidTextRanges->getRangeThatContains(Funcs.back().Range.start())) {
Funcs.back().Range = {Funcs.back().Range.start(), Range->end()};
}
}
Out << "Pruned " << NumBefore - Funcs.size() << " functions, ended with "
<< Funcs.size() << " total\n";
}
return Error::success();
}
uint32_t GsymCreator::copyString(const GsymCreator &SrcGC, uint32_t StrOff) {
// String offset at zero is always the empty string, no copying needed.
if (StrOff == 0)
return 0;
return StrTab.add(SrcGC.StringOffsetMap.find(StrOff)->second);
}
uint32_t GsymCreator::insertString(StringRef S, bool Copy) {
if (S.empty())
return 0;
// The hash can be calculated outside the lock.
CachedHashStringRef CHStr(S);
std::lock_guard<std::mutex> Guard(Mutex);
if (Copy) {
// We need to provide backing storage for the string if requested
// since StringTableBuilder stores references to strings. Any string
// that comes from a section in an object file doesn't need to be
// copied, but any string created by code will need to be copied.
// This allows GsymCreator to be really fast when parsing DWARF and
// other object files as most strings don't need to be copied.
if (!StrTab.contains(CHStr))
CHStr = CachedHashStringRef{StringStorage.insert(S).first->getKey(),
CHStr.hash()};
}
const uint32_t StrOff = StrTab.add(CHStr);
// Save a mapping of string offsets to the cached string reference in case
// we need to segment the GSYM file and copy string from one string table to
// another.
StringOffsetMap.try_emplace(StrOff, CHStr);
return StrOff;
}
StringRef GsymCreator::getString(uint32_t Offset) {
auto I = StringOffsetMap.find(Offset);
assert(I != StringOffsetMap.end() &&
"GsymCreator::getString expects a valid offset as parameter.");
return I->second.val();
}
void GsymCreator::addFunctionInfo(FunctionInfo &&FI) {
std::lock_guard<std::mutex> Guard(Mutex);
Funcs.emplace_back(std::move(FI));
}
void GsymCreator::forEachFunctionInfo(
std::function<bool(FunctionInfo &)> const &Callback) {
std::lock_guard<std::mutex> Guard(Mutex);
for (auto &FI : Funcs) {
if (!Callback(FI))
break;
}
}
void GsymCreator::forEachFunctionInfo(
std::function<bool(const FunctionInfo &)> const &Callback) const {
std::lock_guard<std::mutex> Guard(Mutex);
for (const auto &FI : Funcs) {
if (!Callback(FI))
break;
}
}
size_t GsymCreator::getNumFunctionInfos() const {
std::lock_guard<std::mutex> Guard(Mutex);
return Funcs.size();
}
bool GsymCreator::IsValidTextAddress(uint64_t Addr) const {
if (ValidTextRanges)
return ValidTextRanges->contains(Addr);
return true; // No valid text ranges has been set, so accept all ranges.
}
std::optional<uint64_t> GsymCreator::getFirstFunctionAddress() const {
// If we have finalized then Funcs are sorted. If we are a segment then
// Funcs will be sorted as well since function infos get added from an
// already finalized GsymCreator object where its functions were sorted and
// uniqued.
if ((Finalized || IsSegment) && !Funcs.empty())
return std::optional<uint64_t>(Funcs.front().startAddress());
return std::nullopt;
}
std::optional<uint64_t> GsymCreator::getLastFunctionAddress() const {
// If we have finalized then Funcs are sorted. If we are a segment then
// Funcs will be sorted as well since function infos get added from an
// already finalized GsymCreator object where its functions were sorted and
// uniqued.
if ((Finalized || IsSegment) && !Funcs.empty())
return std::optional<uint64_t>(Funcs.back().startAddress());
return std::nullopt;
}
std::optional<uint64_t> GsymCreator::getBaseAddress() const {
if (BaseAddress)
return BaseAddress;
return getFirstFunctionAddress();
}
uint64_t GsymCreator::getMaxAddressOffset() const {
switch (getAddressOffsetSize()) {
case 1: return UINT8_MAX;
case 2: return UINT16_MAX;
case 4: return UINT32_MAX;
case 8: return UINT64_MAX;
}
llvm_unreachable("invalid address offset");
}
uint8_t GsymCreator::getAddressOffsetSize() const {
const std::optional<uint64_t> BaseAddress = getBaseAddress();
const std::optional<uint64_t> LastFuncAddr = getLastFunctionAddress();
if (BaseAddress && LastFuncAddr) {
const uint64_t AddrDelta = *LastFuncAddr - *BaseAddress;
if (AddrDelta <= UINT8_MAX)
return 1;
else if (AddrDelta <= UINT16_MAX)
return 2;
else if (AddrDelta <= UINT32_MAX)
return 4;
return 8;
}
return 1;
}
uint64_t GsymCreator::calculateHeaderAndTableSize() const {
uint64_t Size = sizeof(Header);
const size_t NumFuncs = Funcs.size();
// Add size of address offset table
Size += NumFuncs * getAddressOffsetSize();
// Add size of address info offsets which are 32 bit integers in version 1.
Size += NumFuncs * sizeof(uint32_t);
// Add file table size
Size += Files.size() * sizeof(FileEntry);
// Add string table size
Size += StrTab.getSize();
return Size;
}
// This function takes a InlineInfo class that was copy constructed from an
// InlineInfo from the \a SrcGC and updates all members that point to strings
// and files to point to strings and files from this GsymCreator.
void GsymCreator::fixupInlineInfo(const GsymCreator &SrcGC, InlineInfo &II) {
II.Name = copyString(SrcGC, II.Name);
II.CallFile = copyFile(SrcGC, II.CallFile);
for (auto &ChildII: II.Children)
fixupInlineInfo(SrcGC, ChildII);
}
uint64_t GsymCreator::copyFunctionInfo(const GsymCreator &SrcGC, size_t FuncIdx) {
// To copy a function info we need to copy any files and strings over into
// this GsymCreator and then copy the function info and update the string
// table offsets to match the new offsets.
const FunctionInfo &SrcFI = SrcGC.Funcs[FuncIdx];
FunctionInfo DstFI;
DstFI.Range = SrcFI.Range;
DstFI.Name = copyString(SrcGC, SrcFI.Name);
// Copy the line table if there is one.
if (SrcFI.OptLineTable) {
// Copy the entire line table.
DstFI.OptLineTable = LineTable(SrcFI.OptLineTable.value());
// Fixup all LineEntry::File entries which are indexes in the the file table
// from SrcGC and must be converted to file indexes from this GsymCreator.
LineTable &DstLT = DstFI.OptLineTable.value();
const size_t NumLines = DstLT.size();
for (size_t I=0; I<NumLines; ++I) {
LineEntry &LE = DstLT.get(I);
LE.File = copyFile(SrcGC, LE.File);
}
}
// Copy the inline information if needed.
if (SrcFI.Inline) {
// Make a copy of the source inline information.
DstFI.Inline = SrcFI.Inline.value();
// Fixup all strings and files in the copied inline information.
fixupInlineInfo(SrcGC, *DstFI.Inline);
}
std::lock_guard<std::mutex> Guard(Mutex);
Funcs.emplace_back(DstFI);
return Funcs.back().cacheEncoding();
}
llvm::Error GsymCreator::saveSegments(StringRef Path,
llvm::endianness ByteOrder,
uint64_t SegmentSize) const {
if (SegmentSize == 0)
return createStringError(std::errc::invalid_argument,
"invalid segment size zero");
size_t FuncIdx = 0;
const size_t NumFuncs = Funcs.size();
while (FuncIdx < NumFuncs) {
llvm::Expected<std::unique_ptr<GsymCreator>> ExpectedGC =
createSegment(SegmentSize, FuncIdx);
if (ExpectedGC) {
GsymCreator *GC = ExpectedGC->get();
if (GC == NULL)
break; // We had not more functions to encode.
// Don't collect any messages at all
OutputAggregator Out(nullptr);
llvm::Error Err = GC->finalize(Out);
if (Err)
return Err;
std::string SegmentedGsymPath;
raw_string_ostream SGP(SegmentedGsymPath);
std::optional<uint64_t> FirstFuncAddr = GC->getFirstFunctionAddress();
if (FirstFuncAddr) {
SGP << Path << "-" << llvm::format_hex(*FirstFuncAddr, 1);
SGP.flush();
Err = GC->save(SegmentedGsymPath, ByteOrder, std::nullopt);
if (Err)
return Err;
}
} else {
return ExpectedGC.takeError();
}
}
return Error::success();
}
llvm::Expected<std::unique_ptr<GsymCreator>>
GsymCreator::createSegment(uint64_t SegmentSize, size_t &FuncIdx) const {
// No function entries, return empty unique pointer
if (FuncIdx >= Funcs.size())
return std::unique_ptr<GsymCreator>();
std::unique_ptr<GsymCreator> GC(new GsymCreator(/*Quiet=*/true));
// Tell the creator that this is a segment.
GC->setIsSegment();
// Set the base address if there is one.
if (BaseAddress)
GC->setBaseAddress(*BaseAddress);
// Copy the UUID value from this object into the new creator.
GC->setUUID(UUID);
const size_t NumFuncs = Funcs.size();
// Track how big the function infos are for the current segment so we can
// emit segments that are close to the requested size. It is quick math to
// determine the current header and tables sizes, so we can do that each loop.
uint64_t SegmentFuncInfosSize = 0;
for (; FuncIdx < NumFuncs; ++FuncIdx) {
const uint64_t HeaderAndTableSize = GC->calculateHeaderAndTableSize();
if (HeaderAndTableSize + SegmentFuncInfosSize >= SegmentSize) {
if (SegmentFuncInfosSize == 0)
return createStringError(std::errc::invalid_argument,
"a segment size of %" PRIu64 " is to small to "
"fit any function infos, specify a larger value",
SegmentSize);
break;
}
SegmentFuncInfosSize += alignTo(GC->copyFunctionInfo(*this, FuncIdx), 4);
}
return std::move(GC);
}