llvm-project/llvm/lib/Target/AArch64/AArch64Subtarget.cpp
Sjoerd Meijer 9bccf61f5f
[AArch64][LV] Set MaxInterleaving to 4 for Neoverse V2 and V3 (#100385)
Set the maximum interleaving factor to 4, aligning with the number of available
SIMD pipelines. This increases the number of vector instructions in the vectorised
loop body, enhancing performance during its execution. However, for very low
iteration counts, the vectorised body might not execute at all, leaving only the
epilogue loop to run. This issue affects e.g. cam4_r from SPEC FP, which
experienced a performance regression. To address this, the patch reduces the
minimum epilogue vectorisation factor from 16 to 8, enabling the epilogue to be
vectorised and largely mitigating the regression.
2024-11-20 09:33:39 +00:00

631 lines
22 KiB
C++

//===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AArch64Subtarget.h"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64PBQPRegAlloc.h"
#include "AArch64TargetMachine.h"
#include "GISel/AArch64CallLowering.h"
#include "GISel/AArch64LegalizerInfo.h"
#include "GISel/AArch64RegisterBankInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/SipHash.h"
#include "llvm/TargetParser/AArch64TargetParser.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-subtarget"
#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "AArch64GenSubtargetInfo.inc"
static cl::opt<bool>
EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if "
"converter pass"), cl::init(true), cl::Hidden);
// If OS supports TBI, use this flag to enable it.
static cl::opt<bool>
UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of "
"an address is ignored"), cl::init(false), cl::Hidden);
static cl::opt<bool> MachOUseNonLazyBind(
"aarch64-macho-enable-nonlazybind",
cl::desc("Call nonlazybind functions via direct GOT load for Mach-O"),
cl::Hidden);
static cl::opt<bool> UseAA("aarch64-use-aa", cl::init(true),
cl::desc("Enable the use of AA during codegen."));
static cl::opt<unsigned> OverrideVectorInsertExtractBaseCost(
"aarch64-insert-extract-base-cost",
cl::desc("Base cost of vector insert/extract element"), cl::Hidden);
// Reserve a list of X# registers, so they are unavailable for register
// allocator, but can still be used as ABI requests, such as passing arguments
// to function call.
static cl::list<std::string>
ReservedRegsForRA("reserve-regs-for-regalloc", cl::desc("Reserve physical "
"registers, so they can't be used by register allocator. "
"Should only be used for testing register allocator."),
cl::CommaSeparated, cl::Hidden);
static cl::opt<AArch64PAuth::AuthCheckMethod>
AuthenticatedLRCheckMethod("aarch64-authenticated-lr-check-method",
cl::Hidden,
cl::desc("Override the variant of check applied "
"to authenticated LR during tail call"),
cl::values(AUTH_CHECK_METHOD_CL_VALUES_LR));
static cl::opt<unsigned> AArch64MinimumJumpTableEntries(
"aarch64-min-jump-table-entries", cl::init(13), cl::Hidden,
cl::desc("Set minimum number of entries to use a jump table on AArch64"));
static cl::opt<unsigned> AArch64StreamingHazardSize(
"aarch64-streaming-hazard-size",
cl::desc("Hazard size for streaming mode memory accesses. 0 = disabled."),
cl::init(0), cl::Hidden);
static cl::alias AArch64StreamingStackHazardSize(
"aarch64-stack-hazard-size",
cl::desc("alias for -aarch64-streaming-hazard-size"),
cl::aliasopt(AArch64StreamingHazardSize));
// Subreg liveness tracking is disabled by default for now until all issues
// are ironed out. This option allows the feature to be used in tests.
static cl::opt<bool>
EnableSubregLivenessTracking("aarch64-enable-subreg-liveness-tracking",
cl::init(false), cl::Hidden,
cl::desc("Enable subreg liveness tracking"));
static cl::opt<bool>
UseScalarIncVL("sve-use-scalar-inc-vl", cl::init(false), cl::Hidden,
cl::desc("Prefer add+cnt over addvl/inc/dec"));
unsigned AArch64Subtarget::getVectorInsertExtractBaseCost() const {
if (OverrideVectorInsertExtractBaseCost.getNumOccurrences() > 0)
return OverrideVectorInsertExtractBaseCost;
return VectorInsertExtractBaseCost;
}
AArch64Subtarget &AArch64Subtarget::initializeSubtargetDependencies(
StringRef FS, StringRef CPUString, StringRef TuneCPUString,
bool HasMinSize) {
// Determine default and user-specified characteristics
if (CPUString.empty())
CPUString = "generic";
if (TuneCPUString.empty())
TuneCPUString = CPUString;
ParseSubtargetFeatures(CPUString, TuneCPUString, FS);
initializeProperties(HasMinSize);
return *this;
}
void AArch64Subtarget::initializeProperties(bool HasMinSize) {
// Initialize CPU specific properties. We should add a tablegen feature for
// this in the future so we can specify it together with the subtarget
// features.
switch (ARMProcFamily) {
case Others:
break;
case Carmel:
CacheLineSize = 64;
break;
case CortexA35:
case CortexA53:
case CortexA55:
case CortexR82:
case CortexR82AE:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(16);
MaxBytesForLoopAlignment = 8;
break;
case CortexA57:
MaxInterleaveFactor = 4;
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(16);
MaxBytesForLoopAlignment = 8;
break;
case CortexA65:
PrefFunctionAlignment = Align(8);
break;
case CortexA72:
case CortexA73:
case CortexA75:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(16);
MaxBytesForLoopAlignment = 8;
break;
case CortexA76:
case CortexA77:
case CortexA78:
case CortexA78AE:
case CortexA78C:
case CortexX1:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
break;
case CortexA510:
case CortexA520:
PrefFunctionAlignment = Align(16);
VScaleForTuning = 1;
PrefLoopAlignment = Align(16);
MaxBytesForLoopAlignment = 8;
break;
case CortexA710:
case CortexA715:
case CortexA720:
case CortexA725:
case CortexX2:
case CortexX3:
case CortexX4:
case CortexX925:
PrefFunctionAlignment = Align(16);
VScaleForTuning = 1;
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
break;
case A64FX:
CacheLineSize = 256;
PrefFunctionAlignment = Align(8);
PrefLoopAlignment = Align(4);
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
VScaleForTuning = 4;
break;
case AppleA7:
case AppleA10:
case AppleA11:
case AppleA12:
case AppleA13:
case AppleA14:
case AppleA15:
case AppleA16:
case AppleA17:
case AppleM4:
CacheLineSize = 64;
PrefetchDistance = 280;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 3;
switch (ARMProcFamily) {
case AppleA14:
case AppleA15:
case AppleA16:
case AppleA17:
case AppleM4:
MaxInterleaveFactor = 4;
break;
default:
break;
}
break;
case ExynosM3:
MaxInterleaveFactor = 4;
MaxJumpTableSize = 20;
PrefFunctionAlignment = Align(32);
PrefLoopAlignment = Align(16);
break;
case Falkor:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
CacheLineSize = 128;
PrefetchDistance = 820;
MinPrefetchStride = 2048;
MaxPrefetchIterationsAhead = 8;
break;
case Kryo:
MaxInterleaveFactor = 4;
VectorInsertExtractBaseCost = 2;
CacheLineSize = 128;
PrefetchDistance = 740;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 11;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case NeoverseE1:
PrefFunctionAlignment = Align(8);
break;
case NeoverseN1:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
break;
case NeoverseV2:
case NeoverseV3:
EpilogueVectorizationMinVF = 8;
MaxInterleaveFactor = 4;
ScatterOverhead = 13;
LLVM_FALLTHROUGH;
case NeoverseN2:
case NeoverseN3:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
VScaleForTuning = 1;
break;
case NeoverseV1:
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(32);
MaxBytesForLoopAlignment = 16;
VScaleForTuning = 2;
DefaultSVETFOpts = TailFoldingOpts::Simple;
break;
case Neoverse512TVB:
PrefFunctionAlignment = Align(16);
VScaleForTuning = 1;
MaxInterleaveFactor = 4;
break;
case Saphira:
MaxInterleaveFactor = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX2T99:
CacheLineSize = 64;
PrefFunctionAlignment = Align(8);
PrefLoopAlignment = Align(4);
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case ThunderX:
case ThunderXT88:
case ThunderXT81:
case ThunderXT83:
CacheLineSize = 128;
PrefFunctionAlignment = Align(8);
PrefLoopAlignment = Align(4);
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case TSV110:
CacheLineSize = 64;
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(4);
break;
case ThunderX3T110:
CacheLineSize = 64;
PrefFunctionAlignment = Align(16);
PrefLoopAlignment = Align(4);
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
MaxPrefetchIterationsAhead = 4;
// FIXME: remove this to enable 64-bit SLP if performance looks good.
MinVectorRegisterBitWidth = 128;
break;
case Ampere1:
case Ampere1A:
case Ampere1B:
CacheLineSize = 64;
PrefFunctionAlignment = Align(64);
PrefLoopAlignment = Align(64);
MaxInterleaveFactor = 4;
break;
case Oryon:
CacheLineSize = 64;
PrefFunctionAlignment = Align(16);
MaxInterleaveFactor = 4;
PrefetchDistance = 128;
MinPrefetchStride = 1024;
break;
}
if (AArch64MinimumJumpTableEntries.getNumOccurrences() > 0 || !HasMinSize)
MinimumJumpTableEntries = AArch64MinimumJumpTableEntries;
}
AArch64Subtarget::AArch64Subtarget(const Triple &TT, StringRef CPU,
StringRef TuneCPU, StringRef FS,
const TargetMachine &TM, bool LittleEndian,
unsigned MinSVEVectorSizeInBitsOverride,
unsigned MaxSVEVectorSizeInBitsOverride,
bool IsStreaming, bool IsStreamingCompatible,
bool HasMinSize)
: AArch64GenSubtargetInfo(TT, CPU, TuneCPU, FS),
ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()),
ReserveXRegisterForRA(AArch64::GPR64commonRegClass.getNumRegs()),
CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()),
IsLittle(LittleEndian), IsStreaming(IsStreaming),
IsStreamingCompatible(IsStreamingCompatible),
StreamingHazardSize(AArch64StreamingHazardSize),
MinSVEVectorSizeInBits(MinSVEVectorSizeInBitsOverride),
MaxSVEVectorSizeInBits(MaxSVEVectorSizeInBitsOverride), TargetTriple(TT),
InstrInfo(initializeSubtargetDependencies(FS, CPU, TuneCPU, HasMinSize)),
TLInfo(TM, *this) {
if (AArch64::isX18ReservedByDefault(TT))
ReserveXRegister.set(18);
CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering()));
InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
Legalizer.reset(new AArch64LegalizerInfo(*this));
auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo());
// FIXME: At this point, we can't rely on Subtarget having RBI.
// It's awkward to mix passing RBI and the Subtarget; should we pass
// TII/TRI as well?
InstSelector.reset(createAArch64InstructionSelector(
*static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI));
RegBankInfo.reset(RBI);
auto TRI = getRegisterInfo();
StringSet<> ReservedRegNames;
ReservedRegNames.insert(ReservedRegsForRA.begin(), ReservedRegsForRA.end());
for (unsigned i = 0; i < 29; ++i) {
if (ReservedRegNames.count(TRI->getName(AArch64::X0 + i)))
ReserveXRegisterForRA.set(i);
}
// X30 is named LR, so we can't use TRI->getName to check X30.
if (ReservedRegNames.count("X30") || ReservedRegNames.count("LR"))
ReserveXRegisterForRA.set(30);
// X29 is named FP, so we can't use TRI->getName to check X29.
if (ReservedRegNames.count("X29") || ReservedRegNames.count("FP"))
ReserveXRegisterForRA.set(29);
EnableSubregLiveness = EnableSubregLivenessTracking.getValue();
}
const CallLowering *AArch64Subtarget::getCallLowering() const {
return CallLoweringInfo.get();
}
const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const {
return InlineAsmLoweringInfo.get();
}
InstructionSelector *AArch64Subtarget::getInstructionSelector() const {
return InstSelector.get();
}
const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const {
return Legalizer.get();
}
const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const {
return RegBankInfo.get();
}
/// Find the target operand flags that describe how a global value should be
/// referenced for the current subtarget.
unsigned
AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV,
const TargetMachine &TM) const {
// MachO large model always goes via a GOT, simply to get a single 8-byte
// absolute relocation on all global addresses.
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO())
return AArch64II::MO_GOT;
// All globals dynamically protected by MTE must have their address tags
// synthesized. This is done by having the loader stash the tag in the GOT
// entry. Force all tagged globals (even ones with internal linkage) through
// the GOT.
if (GV->isTagged())
return AArch64II::MO_GOT;
if (!TM.shouldAssumeDSOLocal(GV)) {
if (GV->hasDLLImportStorageClass()) {
return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT;
}
if (getTargetTriple().isOSWindows())
return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB;
return AArch64II::MO_GOT;
}
// The small code model's direct accesses use ADRP, which cannot
// necessarily produce the value 0 (if the code is above 4GB).
// Same for the tiny code model, where we have a pc relative LDR.
if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) &&
GV->hasExternalWeakLinkage())
return AArch64II::MO_GOT;
// References to tagged globals are marked with MO_NC | MO_TAGGED to indicate
// that their nominal addresses are tagged and outside of the code model. In
// AArch64ExpandPseudo::expandMI we emit an additional instruction to set the
// tag if necessary based on MO_TAGGED.
if (AllowTaggedGlobals && !isa<FunctionType>(GV->getValueType()))
return AArch64II::MO_NC | AArch64II::MO_TAGGED;
return AArch64II::MO_NO_FLAG;
}
unsigned AArch64Subtarget::classifyGlobalFunctionReference(
const GlobalValue *GV, const TargetMachine &TM) const {
// MachO large model always goes via a GOT, because we don't have the
// relocations available to do anything else..
if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() &&
!GV->hasInternalLinkage())
return AArch64II::MO_GOT;
// NonLazyBind goes via GOT unless we know it's available locally.
auto *F = dyn_cast<Function>(GV);
if ((!isTargetMachO() || MachOUseNonLazyBind) && F &&
F->hasFnAttribute(Attribute::NonLazyBind) && !TM.shouldAssumeDSOLocal(GV))
return AArch64II::MO_GOT;
if (getTargetTriple().isOSWindows()) {
if (isWindowsArm64EC() && GV->getValueType()->isFunctionTy()) {
if (GV->hasDLLImportStorageClass()) {
// On Arm64EC, if we're calling a symbol from the import table
// directly, use MO_ARM64EC_CALLMANGLE.
return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT |
AArch64II::MO_ARM64EC_CALLMANGLE;
}
if (GV->hasExternalLinkage()) {
// If we're calling a symbol directly, use the mangled form in the
// call instruction.
return AArch64II::MO_ARM64EC_CALLMANGLE;
}
}
// Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB.
return ClassifyGlobalReference(GV, TM);
}
return AArch64II::MO_NO_FLAG;
}
void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// LNT run (at least on Cyclone) showed reasonably significant gains for
// bi-directional scheduling. 253.perlbmk.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling or Disabling the latency heuristic is a close call: It seems to
// help nearly no benchmark on out-of-order architectures, on the other hand
// it regresses register pressure on a few benchmarking.
Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic;
}
void AArch64Subtarget::adjustSchedDependency(
SUnit *Def, int DefOpIdx, SUnit *Use, int UseOpIdx, SDep &Dep,
const TargetSchedModel *SchedModel) const {
if (!SchedModel || Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
!Def->isInstr() || !Use->isInstr() ||
(Def->getInstr()->getOpcode() != TargetOpcode::BUNDLE &&
Use->getInstr()->getOpcode() != TargetOpcode::BUNDLE))
return;
// If the Def is a BUNDLE, find the last instruction in the bundle that defs
// the register.
const MachineInstr *DefMI = Def->getInstr();
if (DefMI->getOpcode() == TargetOpcode::BUNDLE) {
Register Reg = DefMI->getOperand(DefOpIdx).getReg();
for (const auto &Op : const_mi_bundle_ops(*DefMI)) {
if (Op.isReg() && Op.isDef() && Op.getReg() == Reg) {
DefMI = Op.getParent();
DefOpIdx = Op.getOperandNo();
}
}
}
// If the Use is a BUNDLE, find the first instruction that uses the Reg.
const MachineInstr *UseMI = Use->getInstr();
if (UseMI->getOpcode() == TargetOpcode::BUNDLE) {
Register Reg = UseMI->getOperand(UseOpIdx).getReg();
for (const auto &Op : const_mi_bundle_ops(*UseMI)) {
if (Op.isReg() && Op.isUse() && Op.getReg() == Reg) {
UseMI = Op.getParent();
UseOpIdx = Op.getOperandNo();
break;
}
}
}
Dep.setLatency(
SchedModel->computeOperandLatency(DefMI, DefOpIdx, UseMI, UseOpIdx));
}
bool AArch64Subtarget::enableEarlyIfConversion() const {
return EnableEarlyIfConvert;
}
bool AArch64Subtarget::supportsAddressTopByteIgnored() const {
if (!UseAddressTopByteIgnored)
return false;
if (TargetTriple.isDriverKit())
return true;
if (TargetTriple.isiOS()) {
return TargetTriple.getiOSVersion() >= VersionTuple(8);
}
return false;
}
std::unique_ptr<PBQPRAConstraint>
AArch64Subtarget::getCustomPBQPConstraints() const {
return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr;
}
void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const {
// We usually compute max call frame size after ISel. Do the computation now
// if the .mir file didn't specify it. Note that this will probably give you
// bogus values after PEI has eliminated the callframe setup/destroy pseudo
// instructions, specify explicitly if you need it to be correct.
MachineFrameInfo &MFI = MF.getFrameInfo();
if (!MFI.isMaxCallFrameSizeComputed())
MFI.computeMaxCallFrameSize(MF);
}
bool AArch64Subtarget::useAA() const { return UseAA; }
bool AArch64Subtarget::useScalarIncVL() const {
// If SVE2 or SME is present (we are not SVE-1 only) and UseScalarIncVL
// is not otherwise set, enable it by default.
if (UseScalarIncVL.getNumOccurrences())
return UseScalarIncVL;
return hasSVE2() || hasSME();
}
// If return address signing is enabled, tail calls are emitted as follows:
//
// ```
// <authenticate LR>
// <check LR>
// TCRETURN ; the callee may sign and spill the LR in its prologue
// ```
//
// LR may require explicit checking because if FEAT_FPAC is not implemented
// and LR was tampered with, then `<authenticate LR>` will not generate an
// exception on its own. Later, if the callee spills the signed LR value and
// neither FEAT_PAuth2 nor FEAT_EPAC are implemented, the valid PAC replaces
// the higher bits of LR thus hiding the authentication failure.
AArch64PAuth::AuthCheckMethod AArch64Subtarget::getAuthenticatedLRCheckMethod(
const MachineFunction &MF) const {
// TODO: Check subtarget for the scheme. Present variant is a default for
// pauthtest ABI.
if (MF.getFunction().hasFnAttribute("ptrauth-returns") &&
MF.getFunction().hasFnAttribute("ptrauth-auth-traps"))
return AArch64PAuth::AuthCheckMethod::HighBitsNoTBI;
if (AuthenticatedLRCheckMethod.getNumOccurrences())
return AuthenticatedLRCheckMethod;
// At now, use None by default because checks may introduce an unexpected
// performance regression or incompatibility with execute-only mappings.
return AArch64PAuth::AuthCheckMethod::None;
}
std::optional<uint16_t>
AArch64Subtarget::getPtrAuthBlockAddressDiscriminatorIfEnabled(
const Function &ParentFn) const {
if (!ParentFn.hasFnAttribute("ptrauth-indirect-gotos"))
return std::nullopt;
// We currently have one simple mechanism for all targets.
// This isn't ABI, so we can always do better in the future.
return getPointerAuthStableSipHash(
(Twine(ParentFn.getName()) + " blockaddress").str());
}
bool AArch64Subtarget::enableMachinePipeliner() const {
return getSchedModel().hasInstrSchedModel();
}