llvm-project/llvm/lib/Target/DirectX/DXILDataScalarization.cpp
Farzon Lotfi 324bdd662d
[DirectX] Data Scalarization of Vectors in Global Scope (#110029)
This change adds a pass to scalarize vectors in global scope into
arrays.

There are three distinct parts
1. find the globals that need to be updated and define what the new type
should be
2. initialize that new type and copy over all the right attributes over
from the old type.
3. Use the instruction visitor pattern to update the loads, stores, and
geps for the layout of the new data structure.

resolves https://github.com/llvm/llvm-project/issues/107920
2024-09-26 17:16:29 -04:00

301 lines
11 KiB
C++

//===- DXILDataScalarization.cpp - Perform DXIL Data Legalization ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
#include "DXILDataScalarization.h"
#include "DirectX.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/DXILResource.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ReplaceConstant.h"
#include "llvm/IR/Type.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "dxil-data-scalarization"
static const int MaxVecSize = 4;
using namespace llvm;
class DXILDataScalarizationLegacy : public ModulePass {
public:
bool runOnModule(Module &M) override;
DXILDataScalarizationLegacy() : ModulePass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override;
static char ID; // Pass identification.
};
static bool findAndReplaceVectors(Module &M);
class DataScalarizerVisitor : public InstVisitor<DataScalarizerVisitor, bool> {
public:
DataScalarizerVisitor() : GlobalMap() {}
bool visit(Function &F);
// InstVisitor methods. They return true if the instruction was scalarized,
// false if nothing changed.
bool visitInstruction(Instruction &I) { return false; }
bool visitSelectInst(SelectInst &SI) { return false; }
bool visitICmpInst(ICmpInst &ICI) { return false; }
bool visitFCmpInst(FCmpInst &FCI) { return false; }
bool visitUnaryOperator(UnaryOperator &UO) { return false; }
bool visitBinaryOperator(BinaryOperator &BO) { return false; }
bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
bool visitCastInst(CastInst &CI) { return false; }
bool visitBitCastInst(BitCastInst &BCI) { return false; }
bool visitInsertElementInst(InsertElementInst &IEI) { return false; }
bool visitExtractElementInst(ExtractElementInst &EEI) { return false; }
bool visitShuffleVectorInst(ShuffleVectorInst &SVI) { return false; }
bool visitPHINode(PHINode &PHI) { return false; }
bool visitLoadInst(LoadInst &LI);
bool visitStoreInst(StoreInst &SI);
bool visitCallInst(CallInst &ICI) { return false; }
bool visitFreezeInst(FreezeInst &FI) { return false; }
friend bool findAndReplaceVectors(llvm::Module &M);
private:
GlobalVariable *lookupReplacementGlobal(Value *CurrOperand);
DenseMap<GlobalVariable *, GlobalVariable *> GlobalMap;
SmallVector<WeakTrackingVH, 32> PotentiallyDeadInstrs;
bool finish();
};
bool DataScalarizerVisitor::visit(Function &F) {
assert(!GlobalMap.empty());
ReversePostOrderTraversal<BasicBlock *> RPOT(&F.getEntryBlock());
for (BasicBlock *BB : RPOT) {
for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) {
Instruction *I = &*II;
bool Done = InstVisitor::visit(I);
++II;
if (Done && I->getType()->isVoidTy())
I->eraseFromParent();
}
}
return finish();
}
bool DataScalarizerVisitor::finish() {
RecursivelyDeleteTriviallyDeadInstructionsPermissive(PotentiallyDeadInstrs);
return true;
}
GlobalVariable *
DataScalarizerVisitor::lookupReplacementGlobal(Value *CurrOperand) {
if (GlobalVariable *OldGlobal = dyn_cast<GlobalVariable>(CurrOperand)) {
auto It = GlobalMap.find(OldGlobal);
if (It != GlobalMap.end()) {
return It->second; // Found, return the new global
}
}
return nullptr; // Not found
}
bool DataScalarizerVisitor::visitLoadInst(LoadInst &LI) {
unsigned NumOperands = LI.getNumOperands();
for (unsigned I = 0; I < NumOperands; ++I) {
Value *CurrOpperand = LI.getOperand(I);
if (GlobalVariable *NewGlobal = lookupReplacementGlobal(CurrOpperand))
LI.setOperand(I, NewGlobal);
}
return false;
}
bool DataScalarizerVisitor::visitStoreInst(StoreInst &SI) {
unsigned NumOperands = SI.getNumOperands();
for (unsigned I = 0; I < NumOperands; ++I) {
Value *CurrOpperand = SI.getOperand(I);
if (GlobalVariable *NewGlobal = lookupReplacementGlobal(CurrOpperand)) {
SI.setOperand(I, NewGlobal);
}
}
return false;
}
bool DataScalarizerVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
unsigned NumOperands = GEPI.getNumOperands();
for (unsigned I = 0; I < NumOperands; ++I) {
Value *CurrOpperand = GEPI.getOperand(I);
GlobalVariable *NewGlobal = lookupReplacementGlobal(CurrOpperand);
if (!NewGlobal)
continue;
IRBuilder<> Builder(&GEPI);
SmallVector<Value *, MaxVecSize> Indices;
for (auto &Index : GEPI.indices())
Indices.push_back(Index);
Value *NewGEP =
Builder.CreateGEP(NewGlobal->getValueType(), NewGlobal, Indices);
GEPI.replaceAllUsesWith(NewGEP);
PotentiallyDeadInstrs.emplace_back(&GEPI);
}
return true;
}
// Recursively Creates and Array like version of the given vector like type.
static Type *replaceVectorWithArray(Type *T, LLVMContext &Ctx) {
if (auto *VecTy = dyn_cast<VectorType>(T))
return ArrayType::get(VecTy->getElementType(),
dyn_cast<FixedVectorType>(VecTy)->getNumElements());
if (auto *ArrayTy = dyn_cast<ArrayType>(T)) {
Type *NewElementType =
replaceVectorWithArray(ArrayTy->getElementType(), Ctx);
return ArrayType::get(NewElementType, ArrayTy->getNumElements());
}
// If it's not a vector or array, return the original type.
return T;
}
Constant *transformInitializer(Constant *Init, Type *OrigType, Type *NewType,
LLVMContext &Ctx) {
// Handle ConstantAggregateZero (zero-initialized constants)
if (isa<ConstantAggregateZero>(Init)) {
return ConstantAggregateZero::get(NewType);
}
// Handle UndefValue (undefined constants)
if (isa<UndefValue>(Init)) {
return UndefValue::get(NewType);
}
// Handle vector to array transformation
if (isa<VectorType>(OrigType) && isa<ArrayType>(NewType)) {
// Convert vector initializer to array initializer
SmallVector<Constant *, MaxVecSize> ArrayElements;
if (ConstantVector *ConstVecInit = dyn_cast<ConstantVector>(Init)) {
for (unsigned I = 0; I < ConstVecInit->getNumOperands(); ++I)
ArrayElements.push_back(ConstVecInit->getOperand(I));
} else if (ConstantDataVector *ConstDataVecInit =
llvm::dyn_cast<llvm::ConstantDataVector>(Init)) {
for (unsigned I = 0; I < ConstDataVecInit->getNumElements(); ++I)
ArrayElements.push_back(ConstDataVecInit->getElementAsConstant(I));
} else {
assert(false && "Expected a ConstantVector or ConstantDataVector for "
"vector initializer!");
}
return ConstantArray::get(cast<ArrayType>(NewType), ArrayElements);
}
// Handle array of vectors transformation
if (auto *ArrayTy = dyn_cast<ArrayType>(OrigType)) {
auto *ArrayInit = dyn_cast<ConstantArray>(Init);
assert(ArrayInit && "Expected a ConstantArray for array initializer!");
SmallVector<Constant *, MaxVecSize> NewArrayElements;
for (unsigned I = 0; I < ArrayTy->getNumElements(); ++I) {
// Recursively transform array elements
Constant *NewElemInit = transformInitializer(
ArrayInit->getOperand(I), ArrayTy->getElementType(),
cast<ArrayType>(NewType)->getElementType(), Ctx);
NewArrayElements.push_back(NewElemInit);
}
return ConstantArray::get(cast<ArrayType>(NewType), NewArrayElements);
}
// If not a vector or array, return the original initializer
return Init;
}
static bool findAndReplaceVectors(Module &M) {
bool MadeChange = false;
LLVMContext &Ctx = M.getContext();
IRBuilder<> Builder(Ctx);
DataScalarizerVisitor Impl;
for (GlobalVariable &G : M.globals()) {
Type *OrigType = G.getValueType();
Type *NewType = replaceVectorWithArray(OrigType, Ctx);
if (OrigType != NewType) {
// Create a new global variable with the updated type
// Note: Initializer is set via transformInitializer
GlobalVariable *NewGlobal = new GlobalVariable(
M, NewType, G.isConstant(), G.getLinkage(),
/*Initializer=*/nullptr, G.getName() + ".scalarized", &G,
G.getThreadLocalMode(), G.getAddressSpace(),
G.isExternallyInitialized());
// Copy relevant attributes
NewGlobal->setUnnamedAddr(G.getUnnamedAddr());
if (G.getAlignment() > 0) {
NewGlobal->setAlignment(G.getAlign());
}
if (G.hasInitializer()) {
Constant *Init = G.getInitializer();
Constant *NewInit = transformInitializer(Init, OrigType, NewType, Ctx);
NewGlobal->setInitializer(NewInit);
}
// Note: we want to do G.replaceAllUsesWith(NewGlobal);, but it assumes
// type equality. Instead we will use the visitor pattern.
Impl.GlobalMap[&G] = NewGlobal;
for (User *U : make_early_inc_range(G.users())) {
if (isa<ConstantExpr>(U) && isa<Operator>(U)) {
ConstantExpr *CE = cast<ConstantExpr>(U);
convertUsersOfConstantsToInstructions(CE,
/*RestrictToFunc=*/nullptr,
/*RemoveDeadConstants=*/false,
/*IncludeSelf=*/true);
}
if (isa<Instruction>(U)) {
Instruction *Inst = cast<Instruction>(U);
Function *F = Inst->getFunction();
if (F)
Impl.visit(*F);
}
}
}
}
// Remove the old globals after the iteration
for (auto &[Old, New] : Impl.GlobalMap) {
Old->eraseFromParent();
MadeChange = true;
}
return MadeChange;
}
PreservedAnalyses DXILDataScalarization::run(Module &M,
ModuleAnalysisManager &) {
bool MadeChanges = findAndReplaceVectors(M);
if (!MadeChanges)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DXILResourceAnalysis>();
return PA;
}
bool DXILDataScalarizationLegacy::runOnModule(Module &M) {
return findAndReplaceVectors(M);
}
void DXILDataScalarizationLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<DXILResourceWrapperPass>();
}
char DXILDataScalarizationLegacy::ID = 0;
INITIALIZE_PASS_BEGIN(DXILDataScalarizationLegacy, DEBUG_TYPE,
"DXIL Data Scalarization", false, false)
INITIALIZE_PASS_END(DXILDataScalarizationLegacy, DEBUG_TYPE,
"DXIL Data Scalarization", false, false)
ModulePass *llvm::createDXILDataScalarizationLegacyPass() {
return new DXILDataScalarizationLegacy();
}