llvm-project/llvm/lib/Target/Hexagon/HexagonGenMemAbsolute.cpp
Kazu Hirata 7e8bc5cf77
[Hexagon] Remove unused includes (NFC) (#116529)
Identified with misc-include-cleaner.
2024-11-17 08:38:53 -08:00

273 lines
8.4 KiB
C++

//===--- HexagonGenMemAbsolute.cpp - Generate Load/Store Set Absolute ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This pass traverses through all the basic blocks in a function and converts
// an indexed load/store with offset "0" to a absolute-set load/store
// instruction as long as the use of the register in the new instruction
// dominates the rest of the uses and there are more than 2 uses.
#include "HexagonTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "hexagon-abs"
using namespace llvm;
STATISTIC(HexagonNumLoadAbsConversions,
"Number of Load instructions converted to absolute-set form");
STATISTIC(HexagonNumStoreAbsConversions,
"Number of Store instructions converted to absolute-set form");
namespace llvm {
FunctionPass *createHexagonGenMemAbsolute();
void initializeHexagonGenMemAbsolutePass(PassRegistry &Registry);
} // namespace llvm
namespace {
class HexagonGenMemAbsolute : public MachineFunctionPass {
const HexagonInstrInfo *TII;
MachineRegisterInfo *MRI;
const TargetRegisterInfo *TRI;
public:
static char ID;
HexagonGenMemAbsolute() : MachineFunctionPass(ID), TII(0), MRI(0), TRI(0) {
initializeHexagonGenMemAbsolutePass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override {
return "Hexagon Generate Load/Store Set Absolute Address Instruction";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineDominatorTreeWrapperPass>();
AU.addPreserved<MachineDominatorTreeWrapperPass>();
}
bool runOnMachineFunction(MachineFunction &Fn) override;
private:
static bool isValidIndexedLoad(int &Opcode, int &NewOpcode);
static bool isValidIndexedStore(int &Opcode, int &NewOpcode);
};
} // namespace
char HexagonGenMemAbsolute::ID = 0;
INITIALIZE_PASS(HexagonGenMemAbsolute, "hexagon-gen-load-absolute",
"Hexagon Generate Load/Store Set Absolute Address Instruction",
false, false)
bool HexagonGenMemAbsolute::runOnMachineFunction(MachineFunction &Fn) {
if (skipFunction(Fn.getFunction()))
return false;
TII = Fn.getSubtarget<HexagonSubtarget>().getInstrInfo();
MRI = &Fn.getRegInfo();
TRI = Fn.getRegInfo().getTargetRegisterInfo();
MachineDominatorTree &MDT =
getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
// Loop over all of the basic blocks
for (MachineBasicBlock &MBB : Fn) {
// Traverse the basic block
for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end();
++MII) {
MachineInstr *MI = &*MII;
int Opc = MI->getOpcode();
if (Opc != Hexagon::CONST32 && Opc != Hexagon::A2_tfrsi)
continue;
const MachineOperand &MO = MI->getOperand(0);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned DstReg = MO.getReg();
if (MRI->use_nodbg_empty(DstReg))
continue;
typedef MachineRegisterInfo::use_nodbg_iterator use_iterator;
use_iterator NextUseMI = MRI->use_nodbg_begin(DstReg);
MachineInstr *NextMI = NextUseMI->getParent();
int NextOpc = NextMI->getOpcode();
int NewOpc;
bool IsLoad = isValidIndexedLoad(NextOpc, NewOpc);
if (!IsLoad && !isValidIndexedStore(NextOpc, NewOpc))
continue;
// Base and Offset positions for load and store instructions
// Load R(dest), R(base), Imm -> R(dest) = mem(R(base) + Imm)
// Store R(base), Imm, R (src) -> mem(R(base) + Imm) = R(src)
unsigned BaseRegPos, ImmPos, RegPos;
if (!TII->getBaseAndOffsetPosition(*NextMI, BaseRegPos, ImmPos))
continue;
RegPos = IsLoad ? 0 : 2;
bool IsGlobal = MI->getOperand(1).isGlobal();
if (!MI->getOperand(1).isImm() && !IsGlobal)
continue;
const MachineOperand *BaseOp = nullptr;
int64_t Offset;
bool Scalable;
TII->getMemOperandWithOffset(*NextMI, BaseOp, Offset, Scalable, TRI);
// Ensure BaseOp is non-null and register type.
if (!BaseOp || !BaseOp->isReg())
continue;
if (Scalable)
continue;
unsigned BaseReg = BaseOp->getReg();
if ((DstReg != BaseReg) || (Offset != 0))
continue;
const MachineOperand &MO0 = NextMI->getOperand(RegPos);
if (!MO0.isReg())
continue;
unsigned LoadStoreReg = MO0.getReg();
// Store: Bail out if the src and base are same (def and use on same
// register).
if (LoadStoreReg == BaseReg)
continue;
// Insert the absolute-set instruction "I" only if the use of the
// BaseReg in "I" dominates the rest of the uses of BaseReg and if
// there are more than 2 uses of this BaseReg.
bool Dominates = true;
unsigned Counter = 0;
for (use_iterator I = NextUseMI, E = MRI->use_nodbg_end(); I != E; ++I) {
Counter++;
if (!MDT.dominates(NextMI, I->getParent()))
Dominates = false;
}
if ((!Dominates) || (Counter < 3))
continue;
// If we reach here, we have met all the conditions required for the
// replacement of the absolute instruction.
LLVM_DEBUG({
dbgs() << "Found a pair of instructions for absolute-set "
<< (IsLoad ? "load" : "store") << "\n";
dbgs() << *MI;
dbgs() << *NextMI;
});
MachineBasicBlock *ParentBlock = NextMI->getParent();
MachineInstrBuilder MIB;
if (IsLoad) { // Insert absolute-set load instruction
++HexagonNumLoadAbsConversions;
MIB = BuildMI(*ParentBlock, NextMI, NextMI->getDebugLoc(),
TII->get(NewOpc), LoadStoreReg)
.addReg(DstReg, RegState::Define);
} else { // Insert absolute-set store instruction
++HexagonNumStoreAbsConversions;
MIB = BuildMI(*ParentBlock, NextMI, NextMI->getDebugLoc(),
TII->get(NewOpc), DstReg);
}
MachineOperand ImmOperand = MI->getOperand(1);
if (IsGlobal)
MIB.addGlobalAddress(ImmOperand.getGlobal(), ImmOperand.getOffset(),
ImmOperand.getTargetFlags());
else
MIB.addImm(ImmOperand.getImm());
if (IsLoad)
MIB->getOperand(0).setSubReg(MO0.getSubReg());
else
MIB.addReg(LoadStoreReg, 0, MO0.getSubReg());
LLVM_DEBUG(dbgs() << "Replaced with " << *MIB << "\n");
// Erase the instructions that got replaced.
MII = MBB.erase(MI);
--MII;
NextMI->getParent()->erase(NextMI);
}
}
return true;
}
bool HexagonGenMemAbsolute::isValidIndexedLoad(int &Opc, int &NewOpc) {
bool Result = true;
switch (Opc) {
case Hexagon::L2_loadrb_io:
NewOpc = Hexagon::L4_loadrb_ap;
break;
case Hexagon::L2_loadrh_io:
NewOpc = Hexagon::L4_loadrh_ap;
break;
case Hexagon::L2_loadri_io:
NewOpc = Hexagon::L4_loadri_ap;
break;
case Hexagon::L2_loadrd_io:
NewOpc = Hexagon::L4_loadrd_ap;
break;
case Hexagon::L2_loadruh_io:
NewOpc = Hexagon::L4_loadruh_ap;
break;
case Hexagon::L2_loadrub_io:
NewOpc = Hexagon::L4_loadrub_ap;
break;
default:
Result = false;
}
return Result;
}
bool HexagonGenMemAbsolute::isValidIndexedStore(int &Opc, int &NewOpc) {
bool Result = true;
switch (Opc) {
case Hexagon::S2_storerd_io:
NewOpc = Hexagon::S4_storerd_ap;
break;
case Hexagon::S2_storeri_io:
NewOpc = Hexagon::S4_storeri_ap;
break;
case Hexagon::S2_storerh_io:
NewOpc = Hexagon::S4_storerh_ap;
break;
case Hexagon::S2_storerb_io:
NewOpc = Hexagon::S4_storerb_ap;
break;
default:
Result = false;
}
return Result;
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonGenMemAbsolute() {
return new HexagonGenMemAbsolute();
}