llvm-project/llvm/lib/Target/SPIRV/Analysis/SPIRVConvergenceRegionAnalysis.cpp
Nathan Gauër 1ed65febd9
[SPIR-V] Add SPIR-V structurizer (#107408)
This commit adds an initial SPIR-V structurizer.
It leverages the previously merged passes, and the convergence region
analysis to determine the correct merge and continue blocks for SPIR-V.

The first part does a branch cleanup (simplifying switches, and
legalizing them), then merge instructions are added to cycles,
convergent and later divergent blocks.
Then comes the important part: splitting critical edges, and making sure
the divergent construct boundaries don't cross.

- we split blocks with multiple headers into 2 blocks.
- we split blocks that are a merge blocks for 2 or more constructs:
SPIR-V spec disallow a merge block to be shared by 2
loop/switch/condition construct.
- we split merge & continue blocks: SPIR-V spec disallow a basic block
to be both a continue block, and a merge block.
- we remove superfluous headers: when a header doesn't bring more info
than the parent on the divergence state, it must be removed.

This PR leverages the merged SPIR-V simulator for testing, as long as
spirv-val. For now, most DXC structurization tests are passing. The
unsupported ones are either caused by unsupported features like switches
on boolean types, or switches in region exits, because the MergeExit
pass doesn't support those yet (there is a FIXME).

This PR is quite large, and the addition not trivial, so I tried to keep
it simple. E.G: as soon as the CFG changes, I recompute the dominator
trees and other structures instead of updating them.

---------

Signed-off-by: Nathan Gauër <brioche@google.com>
2024-09-20 11:36:43 +02:00

352 lines
11 KiB
C++

//===- ConvergenceRegionAnalysis.h -----------------------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The analysis determines the convergence region for each basic block of
// the module, and provides a tree-like structure describing the region
// hierarchy.
//
//===----------------------------------------------------------------------===//
#include "SPIRVConvergenceRegionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include <optional>
#include <queue>
#define DEBUG_TYPE "spirv-convergence-region-analysis"
using namespace llvm;
namespace llvm {
void initializeSPIRVConvergenceRegionAnalysisWrapperPassPass(PassRegistry &);
} // namespace llvm
INITIALIZE_PASS_BEGIN(SPIRVConvergenceRegionAnalysisWrapperPass,
"convergence-region",
"SPIRV convergence regions analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(SPIRVConvergenceRegionAnalysisWrapperPass,
"convergence-region", "SPIRV convergence regions analysis",
true, true)
namespace llvm {
namespace SPIRV {
namespace {
template <typename BasicBlockType, typename IntrinsicInstType>
std::optional<IntrinsicInstType *>
getConvergenceTokenInternal(BasicBlockType *BB) {
static_assert(std::is_const_v<IntrinsicInstType> ==
std::is_const_v<BasicBlockType>,
"Constness must match between input and output.");
static_assert(std::is_same_v<BasicBlock, std::remove_const_t<BasicBlockType>>,
"Input must be a basic block.");
static_assert(
std::is_same_v<IntrinsicInst, std::remove_const_t<IntrinsicInstType>>,
"Output type must be an intrinsic instruction.");
for (auto &I : *BB) {
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
switch (II->getIntrinsicID()) {
case Intrinsic::experimental_convergence_entry:
case Intrinsic::experimental_convergence_loop:
return II;
case Intrinsic::experimental_convergence_anchor: {
auto Bundle = II->getOperandBundle(LLVMContext::OB_convergencectrl);
assert(Bundle->Inputs.size() == 1 &&
Bundle->Inputs[0]->getType()->isTokenTy());
auto TII = dyn_cast<IntrinsicInst>(Bundle->Inputs[0].get());
assert(TII != nullptr);
return TII;
}
}
}
if (auto *CI = dyn_cast<CallInst>(&I)) {
auto OB = CI->getOperandBundle(LLVMContext::OB_convergencectrl);
if (!OB.has_value())
continue;
return dyn_cast<IntrinsicInst>(OB.value().Inputs[0]);
}
}
return std::nullopt;
}
// Given a ConvergenceRegion tree with |Start| as its root, finds the smallest
// region |Entry| belongs to. If |Entry| does not belong to the region defined
// by |Start|, this function returns |nullptr|.
ConvergenceRegion *findParentRegion(ConvergenceRegion *Start,
BasicBlock *Entry) {
ConvergenceRegion *Candidate = nullptr;
ConvergenceRegion *NextCandidate = Start;
while (Candidate != NextCandidate && NextCandidate != nullptr) {
Candidate = NextCandidate;
NextCandidate = nullptr;
// End of the search, we can return.
if (Candidate->Children.size() == 0)
return Candidate;
for (auto *Child : Candidate->Children) {
if (Child->Blocks.count(Entry) != 0) {
NextCandidate = Child;
break;
}
}
}
return Candidate;
}
} // anonymous namespace
std::optional<IntrinsicInst *> getConvergenceToken(BasicBlock *BB) {
return getConvergenceTokenInternal<BasicBlock, IntrinsicInst>(BB);
}
std::optional<const IntrinsicInst *> getConvergenceToken(const BasicBlock *BB) {
return getConvergenceTokenInternal<const BasicBlock, const IntrinsicInst>(BB);
}
ConvergenceRegion::ConvergenceRegion(DominatorTree &DT, LoopInfo &LI,
Function &F)
: DT(DT), LI(LI), Parent(nullptr) {
Entry = &F.getEntryBlock();
ConvergenceToken = getConvergenceToken(Entry);
for (auto &B : F) {
Blocks.insert(&B);
if (isa<ReturnInst>(B.getTerminator()))
Exits.insert(&B);
}
}
ConvergenceRegion::ConvergenceRegion(
DominatorTree &DT, LoopInfo &LI,
std::optional<IntrinsicInst *> ConvergenceToken, BasicBlock *Entry,
SmallPtrSet<BasicBlock *, 8> &&Blocks, SmallPtrSet<BasicBlock *, 2> &&Exits)
: DT(DT), LI(LI), ConvergenceToken(ConvergenceToken), Entry(Entry),
Exits(std::move(Exits)), Blocks(std::move(Blocks)) {
for ([[maybe_unused]] auto *BB : this->Exits)
assert(this->Blocks.count(BB) != 0);
assert(this->Blocks.count(this->Entry) != 0);
}
void ConvergenceRegion::releaseMemory() {
// Parent memory is owned by the parent.
Parent = nullptr;
for (auto *Child : Children) {
Child->releaseMemory();
delete Child;
}
Children.resize(0);
}
void ConvergenceRegion::dump(const unsigned IndentSize) const {
const std::string Indent(IndentSize, '\t');
dbgs() << Indent << this << ": {\n";
dbgs() << Indent << " Parent: " << Parent << "\n";
if (ConvergenceToken.value_or(nullptr)) {
dbgs() << Indent
<< " ConvergenceToken: " << ConvergenceToken.value()->getName()
<< "\n";
}
if (Entry->getName() != "")
dbgs() << Indent << " Entry: " << Entry->getName() << "\n";
else
dbgs() << Indent << " Entry: " << Entry << "\n";
dbgs() << Indent << " Exits: { ";
for (const auto &Exit : Exits) {
if (Exit->getName() != "")
dbgs() << Exit->getName() << ", ";
else
dbgs() << Exit << ", ";
}
dbgs() << " }\n";
dbgs() << Indent << " Blocks: { ";
for (const auto &Block : Blocks) {
if (Block->getName() != "")
dbgs() << Block->getName() << ", ";
else
dbgs() << Block << ", ";
}
dbgs() << " }\n";
dbgs() << Indent << " Children: {\n";
for (const auto Child : Children)
Child->dump(IndentSize + 2);
dbgs() << Indent << " }\n";
dbgs() << Indent << "}\n";
}
class ConvergenceRegionAnalyzer {
public:
ConvergenceRegionAnalyzer(Function &F, DominatorTree &DT, LoopInfo &LI)
: DT(DT), LI(LI), F(F) {}
private:
bool isBackEdge(const BasicBlock *From, const BasicBlock *To) const {
if (From == To)
return true;
// We only handle loop in the simplified form. This means:
// - a single back-edge, a single latch.
// - meaning the back-edge target can only be the loop header.
// - meaning the From can only be the loop latch.
if (!LI.isLoopHeader(To))
return false;
auto *L = LI.getLoopFor(To);
if (L->contains(From) && L->isLoopLatch(From))
return true;
return false;
}
std::unordered_set<BasicBlock *>
findPathsToMatch(LoopInfo &LI, BasicBlock *From,
std::function<bool(const BasicBlock *)> isMatch) const {
std::unordered_set<BasicBlock *> Output;
if (isMatch(From))
Output.insert(From);
auto *Terminator = From->getTerminator();
for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
auto *To = Terminator->getSuccessor(i);
// Ignore back edges.
if (isBackEdge(From, To))
continue;
auto ChildSet = findPathsToMatch(LI, To, isMatch);
if (ChildSet.size() == 0)
continue;
Output.insert(ChildSet.begin(), ChildSet.end());
Output.insert(From);
if (LI.isLoopHeader(From)) {
auto *L = LI.getLoopFor(From);
for (auto *BB : L->getBlocks()) {
Output.insert(BB);
}
}
}
return Output;
}
SmallPtrSet<BasicBlock *, 2>
findExitNodes(const SmallPtrSetImpl<BasicBlock *> &RegionBlocks) {
SmallPtrSet<BasicBlock *, 2> Exits;
for (auto *B : RegionBlocks) {
auto *Terminator = B->getTerminator();
for (unsigned i = 0; i < Terminator->getNumSuccessors(); ++i) {
auto *Child = Terminator->getSuccessor(i);
if (RegionBlocks.count(Child) == 0)
Exits.insert(B);
}
}
return Exits;
}
public:
ConvergenceRegionInfo analyze() {
ConvergenceRegion *TopLevelRegion = new ConvergenceRegion(DT, LI, F);
std::queue<Loop *> ToProcess;
for (auto *L : LI.getLoopsInPreorder())
ToProcess.push(L);
while (ToProcess.size() != 0) {
auto *L = ToProcess.front();
ToProcess.pop();
auto CT = getConvergenceToken(L->getHeader());
SmallPtrSet<BasicBlock *, 8> RegionBlocks(L->block_begin(),
L->block_end());
SmallVector<BasicBlock *> LoopExits;
L->getExitingBlocks(LoopExits);
if (CT.has_value()) {
for (auto *Exit : LoopExits) {
auto N = findPathsToMatch(LI, Exit, [&CT](const BasicBlock *block) {
auto Token = getConvergenceToken(block);
if (Token == std::nullopt)
return false;
return Token.value() == CT.value();
});
RegionBlocks.insert(N.begin(), N.end());
}
}
auto RegionExits = findExitNodes(RegionBlocks);
ConvergenceRegion *Region = new ConvergenceRegion(
DT, LI, CT, L->getHeader(), std::move(RegionBlocks),
std::move(RegionExits));
Region->Parent = findParentRegion(TopLevelRegion, Region->Entry);
assert(Region->Parent != nullptr && "This is impossible.");
Region->Parent->Children.push_back(Region);
}
return ConvergenceRegionInfo(TopLevelRegion);
}
private:
DominatorTree &DT;
LoopInfo &LI;
Function &F;
};
ConvergenceRegionInfo getConvergenceRegions(Function &F, DominatorTree &DT,
LoopInfo &LI) {
ConvergenceRegionAnalyzer Analyzer(F, DT, LI);
return Analyzer.analyze();
}
} // namespace SPIRV
char SPIRVConvergenceRegionAnalysisWrapperPass::ID = 0;
SPIRVConvergenceRegionAnalysisWrapperPass::
SPIRVConvergenceRegionAnalysisWrapperPass()
: FunctionPass(ID) {}
bool SPIRVConvergenceRegionAnalysisWrapperPass::runOnFunction(Function &F) {
DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
CRI = SPIRV::getConvergenceRegions(F, DT, LI);
// Nothing was modified.
return false;
}
SPIRVConvergenceRegionAnalysis::Result
SPIRVConvergenceRegionAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
Result CRI;
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &LI = AM.getResult<LoopAnalysis>(F);
CRI = SPIRV::getConvergenceRegions(F, DT, LI);
return CRI;
}
AnalysisKey SPIRVConvergenceRegionAnalysis::Key;
} // namespace llvm