llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp
Aiden Grossman 7530e707af
[X86] Ignore REX prefixes not immediately before opcode (#117299)
The Intel X86 Architecture Manual says the following:

> A REX prefix is ignored, as are its individual bits, when it is not
needed
> for an instruction or when it does not immediately precede the opcode
byte or
> the escape opcode byte (0FH) of an instruction for which it is needed.
This
> has the implication that only one REX prefix, properly located, can
affect an
> instruction.

We currently do not handle these cases in the disassembler, leading to
incorrect disassembly. This patch rectifies the situation by treating
REX prefixes as standard prefixes rather than only expecting them before
the Opcode.

The motivating test case added as a test was fuzzer generated.
2024-11-22 10:56:24 -08:00

2492 lines
83 KiB
C++

//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is part of the X86 Disassembler.
// It contains code to translate the data produced by the decoder into
// MCInsts.
//
//
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
// 64-bit X86 instruction sets. The main decode sequence for an assembly
// instruction in this disassembler is:
//
// 1. Read the prefix bytes and determine the attributes of the instruction.
// These attributes, recorded in enum attributeBits
// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
// provides a mapping from bitmasks to contexts, which are represented by
// enum InstructionContext (ibid.).
//
// 2. Read the opcode, and determine what kind of opcode it is. The
// disassembler distinguishes four kinds of opcodes, which are enumerated in
// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
//
// 3. Depending on the opcode type, look in one of four ClassDecision structures
// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
// a ModRMDecision (ibid.).
//
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
// ModR/M byte is required and how to interpret it.
//
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
// meanings of its operands.
//
// 6. For each operand, its encoding is an entry from OperandEncoding
// (X86DisassemblerDecoderCommon.h) and its type is an entry from
// OperandType (ibid.). The encoding indicates how to read it from the
// instruction; the type indicates how to interpret the value once it has
// been read. For example, a register operand could be stored in the R/M
// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
// register, for instance). Given this information, the operands can be
// extracted and interpreted.
//
// 7. As the last step, the disassembler translates the instruction information
// and operands into a format understandable by the client - in this case, an
// MCInst for use by the MC infrastructure.
//
// The disassembler is broken broadly into two parts: the table emitter that
// emits the instruction decode tables discussed above during compilation, and
// the disassembler itself. The table emitter is documented in more detail in
// utils/TableGen/X86DisassemblerEmitter.h.
//
// X86Disassembler.cpp contains the code responsible for step 7, and for
// invoking the decoder to execute steps 1-6.
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
// table emitter and the disassembler.
// X86DisassemblerDecoder.h contains the public interface of the decoder,
// factored out into C for possible use by other projects.
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
// responsible for steps 1-6.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "TargetInfo/X86TargetInfo.h"
#include "X86DisassemblerDecoder.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::X86Disassembler;
#define DEBUG_TYPE "x86-disassembler"
#define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
// Specifies whether a ModR/M byte is needed and (if so) which
// instruction each possible value of the ModR/M byte corresponds to. Once
// this information is known, we have narrowed down to a single instruction.
struct ModRMDecision {
uint8_t modrm_type;
uint32_t instructionIDs;
};
// Specifies which set of ModR/M->instruction tables to look at
// given a particular opcode.
struct OpcodeDecision {
ModRMDecision modRMDecisions[256];
};
// Specifies which opcode->instruction tables to look at given
// a particular context (set of attributes). Since there are many possible
// contexts, the decoder first uses CONTEXTS_SYM to determine which context
// applies given a specific set of attributes. Hence there are only IC_max
// entries in this table, rather than 2^(ATTR_max).
struct ContextDecision {
OpcodeDecision opcodeDecisions[IC_max];
};
#include "X86GenDisassemblerTables.inc"
static InstrUID decode(OpcodeType type, InstructionContext insnContext,
uint8_t opcode, uint8_t modRM) {
const struct ModRMDecision *dec;
switch (type) {
case ONEBYTE:
dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case TWOBYTE:
dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case THREEBYTE_38:
dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case THREEBYTE_3A:
dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case XOP8_MAP:
dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case XOP9_MAP:
dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case XOPA_MAP:
dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case THREEDNOW_MAP:
dec =
&THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case MAP4:
dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case MAP5:
dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case MAP6:
dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
case MAP7:
dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
break;
}
switch (dec->modrm_type) {
default:
llvm_unreachable("Corrupt table! Unknown modrm_type");
return 0;
case MODRM_ONEENTRY:
return modRMTable[dec->instructionIDs];
case MODRM_SPLITRM:
if (modFromModRM(modRM) == 0x3)
return modRMTable[dec->instructionIDs + 1];
return modRMTable[dec->instructionIDs];
case MODRM_SPLITREG:
if (modFromModRM(modRM) == 0x3)
return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
case MODRM_SPLITMISC:
if (modFromModRM(modRM) == 0x3)
return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
case MODRM_FULL:
return modRMTable[dec->instructionIDs + modRM];
}
}
static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
uint64_t offset = insn->readerCursor - insn->startLocation;
if (offset >= insn->bytes.size())
return true;
byte = insn->bytes[offset];
return false;
}
template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
auto r = insn->bytes;
uint64_t offset = insn->readerCursor - insn->startLocation;
if (offset + sizeof(T) > r.size())
return true;
ptr = support::endian::read<T>(&r[offset], llvm::endianness::little);
insn->readerCursor += sizeof(T);
return false;
}
static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
}
static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) {
return insn->mode == MODE_64BIT && prefix == 0xd5;
}
// Consumes all of an instruction's prefix bytes, and marks the
// instruction as having them. Also sets the instruction's default operand,
// address, and other relevant data sizes to report operands correctly.
//
// insn must not be empty.
static int readPrefixes(struct InternalInstruction *insn) {
bool isPrefix = true;
uint8_t byte = 0;
uint8_t nextByte;
LLVM_DEBUG(dbgs() << "readPrefixes()");
while (isPrefix) {
// If we fail reading prefixes, just stop here and let the opcode reader
// deal with it.
if (consume(insn, byte))
break;
// If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
// break and let it be disassembled as a normal "instruction".
if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
break;
if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
// If the byte is 0xf2 or 0xf3, and any of the following conditions are
// met:
// - it is followed by a LOCK (0xf0) prefix
// - it is followed by an xchg instruction
// then it should be disassembled as a xacquire/xrelease not repne/rep.
if (((nextByte == 0xf0) ||
((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
insn->xAcquireRelease = true;
if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
break;
}
// Also if the byte is 0xf3, and the following condition is met:
// - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
// "mov mem, imm" (opcode 0xc6/0xc7) instructions.
// then it should be disassembled as an xrelease not rep.
if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
nextByte == 0xc6 || nextByte == 0xc7)) {
insn->xAcquireRelease = true;
break;
}
if (isREX(insn, nextByte)) {
uint8_t nnextByte;
// Go to REX prefix after the current one
if (consume(insn, nnextByte))
return -1;
// We should be able to read next byte after REX prefix
if (peek(insn, nnextByte))
return -1;
--insn->readerCursor;
}
}
switch (byte) {
case 0xf0: // LOCK
insn->hasLockPrefix = true;
break;
case 0xf2: // REPNE/REPNZ
case 0xf3: { // REP or REPE/REPZ
uint8_t nextByte;
if (peek(insn, nextByte))
break;
// TODO:
// 1. There could be several 0x66
// 2. if (nextByte == 0x66) and nextNextByte != 0x0f then
// it's not mandatory prefix
// 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
// 0x0f exactly after it to be mandatory prefix
// 4. if (nextByte == 0xd5) it's REX2 and we need
// 0x0f exactly after it to be mandatory prefix
if (isREX(insn, nextByte) || isREX2(insn, nextByte) || nextByte == 0x0f ||
nextByte == 0x66)
// The last of 0xf2 /0xf3 is mandatory prefix
insn->mandatoryPrefix = byte;
insn->repeatPrefix = byte;
break;
}
case 0x2e: // CS segment override -OR- Branch not taken
insn->segmentOverride = SEG_OVERRIDE_CS;
break;
case 0x36: // SS segment override -OR- Branch taken
insn->segmentOverride = SEG_OVERRIDE_SS;
break;
case 0x3e: // DS segment override
insn->segmentOverride = SEG_OVERRIDE_DS;
break;
case 0x26: // ES segment override
insn->segmentOverride = SEG_OVERRIDE_ES;
break;
case 0x64: // FS segment override
insn->segmentOverride = SEG_OVERRIDE_FS;
break;
case 0x65: // GS segment override
insn->segmentOverride = SEG_OVERRIDE_GS;
break;
case 0x66: { // Operand-size override {
uint8_t nextByte;
insn->hasOpSize = true;
if (peek(insn, nextByte))
break;
// 0x66 can't overwrite existing mandatory prefix and should be ignored
if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
insn->mandatoryPrefix = byte;
break;
}
case 0x67: // Address-size override
insn->hasAdSize = true;
break;
default: // Not a prefix byte
isPrefix = false;
break;
}
if (isREX(insn, byte)) {
insn->rexPrefix = byte;
isPrefix = true;
LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
} else if (isPrefix) {
insn->rexPrefix = 0;
}
if (isPrefix)
LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
}
insn->vectorExtensionType = TYPE_NO_VEX_XOP;
if (byte == 0x62) {
uint8_t byte1, byte2;
if (consume(insn, byte1)) {
LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
return -1;
}
if (peek(insn, byte2)) {
LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
return -1;
}
if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) {
insn->vectorExtensionType = TYPE_EVEX;
} else {
--insn->readerCursor; // unconsume byte1
--insn->readerCursor; // unconsume byte
}
if (insn->vectorExtensionType == TYPE_EVEX) {
insn->vectorExtensionPrefix[0] = byte;
insn->vectorExtensionPrefix[1] = byte1;
if (consume(insn, insn->vectorExtensionPrefix[2])) {
LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
return -1;
}
if (consume(insn, insn->vectorExtensionPrefix[3])) {
LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
return -1;
}
if (insn->mode == MODE_64BIT) {
// We simulate the REX prefix for simplicity's sake
insn->rexPrefix = 0x40 |
(wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
(rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
(xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
(bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
// We simulate the REX2 prefix for simplicity's sake
insn->rex2ExtensionPrefix[1] =
(r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) |
(uFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) |
(b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4);
}
LLVM_DEBUG(
dbgs() << format(
"Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
}
} else if (byte == 0xc4) {
uint8_t byte1;
if (peek(insn, byte1)) {
LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
return -1;
}
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
insn->vectorExtensionType = TYPE_VEX_3B;
else
--insn->readerCursor;
if (insn->vectorExtensionType == TYPE_VEX_3B) {
insn->vectorExtensionPrefix[0] = byte;
consume(insn, insn->vectorExtensionPrefix[1]);
consume(insn, insn->vectorExtensionPrefix[2]);
// We simulate the REX prefix for simplicity's sake
if (insn->mode == MODE_64BIT)
insn->rexPrefix = 0x40 |
(wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
(rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
(xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
(bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
insn->vectorExtensionPrefix[0],
insn->vectorExtensionPrefix[1],
insn->vectorExtensionPrefix[2]));
}
} else if (byte == 0xc5) {
uint8_t byte1;
if (peek(insn, byte1)) {
LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
return -1;
}
if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
insn->vectorExtensionType = TYPE_VEX_2B;
else
--insn->readerCursor;
if (insn->vectorExtensionType == TYPE_VEX_2B) {
insn->vectorExtensionPrefix[0] = byte;
consume(insn, insn->vectorExtensionPrefix[1]);
if (insn->mode == MODE_64BIT)
insn->rexPrefix =
0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
default:
break;
case VEX_PREFIX_66:
insn->hasOpSize = true;
break;
}
LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
insn->vectorExtensionPrefix[0],
insn->vectorExtensionPrefix[1]));
}
} else if (byte == 0x8f) {
uint8_t byte1;
if (peek(insn, byte1)) {
LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
return -1;
}
if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
insn->vectorExtensionType = TYPE_XOP;
else
--insn->readerCursor;
if (insn->vectorExtensionType == TYPE_XOP) {
insn->vectorExtensionPrefix[0] = byte;
consume(insn, insn->vectorExtensionPrefix[1]);
consume(insn, insn->vectorExtensionPrefix[2]);
// We simulate the REX prefix for simplicity's sake
if (insn->mode == MODE_64BIT)
insn->rexPrefix = 0x40 |
(wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
(rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
(xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
(bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
default:
break;
case VEX_PREFIX_66:
insn->hasOpSize = true;
break;
}
LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
insn->vectorExtensionPrefix[0],
insn->vectorExtensionPrefix[1],
insn->vectorExtensionPrefix[2]));
}
} else if (isREX2(insn, byte)) {
uint8_t byte1;
if (peek(insn, byte1)) {
LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2");
return -1;
}
insn->rex2ExtensionPrefix[0] = byte;
consume(insn, insn->rex2ExtensionPrefix[1]);
// We simulate the REX prefix for simplicity's sake
insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) |
(rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) |
(xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) |
(bFromREX2(insn->rex2ExtensionPrefix[1]) << 0);
LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx",
insn->rex2ExtensionPrefix[0],
insn->rex2ExtensionPrefix[1]));
} else
--insn->readerCursor;
if (insn->mode == MODE_16BIT) {
insn->registerSize = (insn->hasOpSize ? 4 : 2);
insn->addressSize = (insn->hasAdSize ? 4 : 2);
insn->displacementSize = (insn->hasAdSize ? 4 : 2);
insn->immediateSize = (insn->hasOpSize ? 4 : 2);
} else if (insn->mode == MODE_32BIT) {
insn->registerSize = (insn->hasOpSize ? 2 : 4);
insn->addressSize = (insn->hasAdSize ? 2 : 4);
insn->displacementSize = (insn->hasAdSize ? 2 : 4);
insn->immediateSize = (insn->hasOpSize ? 2 : 4);
} else if (insn->mode == MODE_64BIT) {
insn->displacementSize = 4;
if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
insn->registerSize = 8;
insn->addressSize = (insn->hasAdSize ? 4 : 8);
insn->immediateSize = 4;
insn->hasOpSize = false;
} else {
insn->registerSize = (insn->hasOpSize ? 2 : 4);
insn->addressSize = (insn->hasAdSize ? 4 : 8);
insn->immediateSize = (insn->hasOpSize ? 2 : 4);
}
}
return 0;
}
// Consumes the SIB byte to determine addressing information.
static int readSIB(struct InternalInstruction *insn) {
SIBBase sibBaseBase = SIB_BASE_NONE;
uint8_t index, base;
LLVM_DEBUG(dbgs() << "readSIB()");
switch (insn->addressSize) {
case 2:
default:
llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
case 4:
insn->sibIndexBase = SIB_INDEX_EAX;
sibBaseBase = SIB_BASE_EAX;
break;
case 8:
insn->sibIndexBase = SIB_INDEX_RAX;
sibBaseBase = SIB_BASE_RAX;
break;
}
if (consume(insn, insn->sib))
return -1;
index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) |
(x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
if (index == 0x4) {
insn->sibIndex = SIB_INDEX_NONE;
} else {
insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
}
insn->sibScale = 1 << scaleFromSIB(insn->sib);
base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) |
(b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
switch (base) {
case 0x5:
case 0xd:
switch (modFromModRM(insn->modRM)) {
case 0x0:
insn->eaDisplacement = EA_DISP_32;
insn->sibBase = SIB_BASE_NONE;
break;
case 0x1:
insn->eaDisplacement = EA_DISP_8;
insn->sibBase = (SIBBase)(sibBaseBase + base);
break;
case 0x2:
insn->eaDisplacement = EA_DISP_32;
insn->sibBase = (SIBBase)(sibBaseBase + base);
break;
default:
llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
}
break;
default:
insn->sibBase = (SIBBase)(sibBaseBase + base);
break;
}
return 0;
}
static int readDisplacement(struct InternalInstruction *insn) {
int8_t d8;
int16_t d16;
int32_t d32;
LLVM_DEBUG(dbgs() << "readDisplacement()");
insn->displacementOffset = insn->readerCursor - insn->startLocation;
switch (insn->eaDisplacement) {
case EA_DISP_NONE:
break;
case EA_DISP_8:
if (consume(insn, d8))
return -1;
insn->displacement = d8;
break;
case EA_DISP_16:
if (consume(insn, d16))
return -1;
insn->displacement = d16;
break;
case EA_DISP_32:
if (consume(insn, d32))
return -1;
insn->displacement = d32;
break;
}
return 0;
}
// Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
static int readModRM(struct InternalInstruction *insn) {
uint8_t mod, rm, reg;
LLVM_DEBUG(dbgs() << "readModRM()");
if (insn->consumedModRM)
return 0;
if (consume(insn, insn->modRM))
return -1;
insn->consumedModRM = true;
mod = modFromModRM(insn->modRM);
rm = rmFromModRM(insn->modRM);
reg = regFromModRM(insn->modRM);
// This goes by insn->registerSize to pick the correct register, which messes
// up if we're using (say) XMM or 8-bit register operands. That gets fixed in
// fixupReg().
switch (insn->registerSize) {
case 2:
insn->regBase = MODRM_REG_AX;
insn->eaRegBase = EA_REG_AX;
break;
case 4:
insn->regBase = MODRM_REG_EAX;
insn->eaRegBase = EA_REG_EAX;
break;
case 8:
insn->regBase = MODRM_REG_RAX;
insn->eaRegBase = EA_REG_RAX;
break;
}
reg |= (rFromREX(insn->rexPrefix) << 3) |
(r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
rm |= (bFromREX(insn->rexPrefix) << 3) |
(b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT)
reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
insn->reg = (Reg)(insn->regBase + reg);
switch (insn->addressSize) {
case 2: {
EABase eaBaseBase = EA_BASE_BX_SI;
switch (mod) {
case 0x0:
if (rm == 0x6) {
insn->eaBase = EA_BASE_NONE;
insn->eaDisplacement = EA_DISP_16;
if (readDisplacement(insn))
return -1;
} else {
insn->eaBase = (EABase)(eaBaseBase + rm);
insn->eaDisplacement = EA_DISP_NONE;
}
break;
case 0x1:
insn->eaBase = (EABase)(eaBaseBase + rm);
insn->eaDisplacement = EA_DISP_8;
insn->displacementSize = 1;
if (readDisplacement(insn))
return -1;
break;
case 0x2:
insn->eaBase = (EABase)(eaBaseBase + rm);
insn->eaDisplacement = EA_DISP_16;
if (readDisplacement(insn))
return -1;
break;
case 0x3:
insn->eaBase = (EABase)(insn->eaRegBase + rm);
if (readDisplacement(insn))
return -1;
break;
}
break;
}
case 4:
case 8: {
EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
switch (mod) {
case 0x0:
insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
// In determining whether RIP-relative mode is used (rm=5),
// or whether a SIB byte is present (rm=4),
// the extension bits (REX.b and EVEX.x) are ignored.
switch (rm & 7) {
case 0x4: // SIB byte is present
insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
if (readSIB(insn) || readDisplacement(insn))
return -1;
break;
case 0x5: // RIP-relative
insn->eaBase = EA_BASE_NONE;
insn->eaDisplacement = EA_DISP_32;
if (readDisplacement(insn))
return -1;
break;
default:
insn->eaBase = (EABase)(eaBaseBase + rm);
break;
}
break;
case 0x1:
insn->displacementSize = 1;
[[fallthrough]];
case 0x2:
insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
switch (rm & 7) {
case 0x4: // SIB byte is present
insn->eaBase = EA_BASE_sib;
if (readSIB(insn) || readDisplacement(insn))
return -1;
break;
default:
insn->eaBase = (EABase)(eaBaseBase + rm);
if (readDisplacement(insn))
return -1;
break;
}
break;
case 0x3:
insn->eaDisplacement = EA_DISP_NONE;
insn->eaBase = (EABase)(insn->eaRegBase + rm);
break;
}
break;
}
} // switch (insn->addressSize)
return 0;
}
#define GENERIC_FIXUP_FUNC(name, base, prefix) \
static uint16_t name(struct InternalInstruction *insn, OperandType type, \
uint8_t index, uint8_t *valid) { \
*valid = 1; \
switch (type) { \
default: \
debug("Unhandled register type"); \
*valid = 0; \
return 0; \
case TYPE_Rv: \
return base + index; \
case TYPE_R8: \
if (insn->rexPrefix && index >= 4 && index <= 7) \
return prefix##_SPL + (index - 4); \
else \
return prefix##_AL + index; \
case TYPE_R16: \
return prefix##_AX + index; \
case TYPE_R32: \
return prefix##_EAX + index; \
case TYPE_R64: \
return prefix##_RAX + index; \
case TYPE_ZMM: \
return prefix##_ZMM0 + index; \
case TYPE_YMM: \
return prefix##_YMM0 + index; \
case TYPE_XMM: \
return prefix##_XMM0 + index; \
case TYPE_TMM: \
if (index > 7) \
*valid = 0; \
return prefix##_TMM0 + index; \
case TYPE_TMM_PAIR: \
if (index > 7) \
*valid = 0; \
return prefix##_TMM0_TMM1 + (index / 2); \
case TYPE_VK: \
index &= 0xf; \
if (index > 7) \
*valid = 0; \
return prefix##_K0 + index; \
case TYPE_VK_PAIR: \
if (index > 7) \
*valid = 0; \
return prefix##_K0_K1 + (index / 2); \
case TYPE_MM64: \
return prefix##_MM0 + (index & 0x7); \
case TYPE_SEGMENTREG: \
if ((index & 7) > 5) \
*valid = 0; \
return prefix##_ES + (index & 7); \
case TYPE_DEBUGREG: \
if (index > 15) \
*valid = 0; \
return prefix##_DR0 + index; \
case TYPE_CONTROLREG: \
if (index > 15) \
*valid = 0; \
return prefix##_CR0 + index; \
case TYPE_MVSIBX: \
return prefix##_XMM0 + index; \
case TYPE_MVSIBY: \
return prefix##_YMM0 + index; \
case TYPE_MVSIBZ: \
return prefix##_ZMM0 + index; \
} \
}
// Consult an operand type to determine the meaning of the reg or R/M field. If
// the operand is an XMM operand, for example, an operand would be XMM0 instead
// of AX, which readModRM() would otherwise misinterpret it as.
//
// @param insn - The instruction containing the operand.
// @param type - The operand type.
// @param index - The existing value of the field as reported by readModRM().
// @param valid - The address of a uint8_t. The target is set to 1 if the
// field is valid for the register class; 0 if not.
// @return - The proper value.
GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
// Consult an operand specifier to determine which of the fixup*Value functions
// to use in correcting readModRM()'ss interpretation.
//
// @param insn - See fixup*Value().
// @param op - The operand specifier.
// @return - 0 if fixup was successful; -1 if the register returned was
// invalid for its class.
static int fixupReg(struct InternalInstruction *insn,
const struct OperandSpecifier *op) {
uint8_t valid;
LLVM_DEBUG(dbgs() << "fixupReg()");
switch ((OperandEncoding)op->encoding) {
default:
debug("Expected a REG or R/M encoding in fixupReg");
return -1;
case ENCODING_VVVV:
insn->vvvv =
(Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
if (!valid)
return -1;
break;
case ENCODING_REG:
insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
insn->reg - insn->regBase, &valid);
if (!valid)
return -1;
break;
CASE_ENCODING_RM:
if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
modFromModRM(insn->modRM) == 3) {
// EVEX_X can extend the register id to 32 for a non-GPR register that is
// encoded in RM.
// mode : MODE_64_BIT
// Only 8 vector registers are available in 32 bit mode
// mod : 3
// RM encodes a register
switch (op->type) {
case TYPE_Rv:
case TYPE_R8:
case TYPE_R16:
case TYPE_R32:
case TYPE_R64:
break;
default:
insn->eaBase =
(EABase)(insn->eaBase +
(xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4));
break;
}
}
[[fallthrough]];
case ENCODING_SIB:
if (insn->eaBase >= insn->eaRegBase) {
insn->eaBase = (EABase)fixupRMValue(
insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
if (!valid)
return -1;
}
break;
}
return 0;
}
// Read the opcode (except the ModR/M byte in the case of extended or escape
// opcodes).
static bool readOpcode(struct InternalInstruction *insn) {
uint8_t current;
LLVM_DEBUG(dbgs() << "readOpcode()");
insn->opcodeType = ONEBYTE;
if (insn->vectorExtensionType == TYPE_EVEX) {
switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
default:
LLVM_DEBUG(
dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
return true;
case VEX_LOB_0F:
insn->opcodeType = TWOBYTE;
return consume(insn, insn->opcode);
case VEX_LOB_0F38:
insn->opcodeType = THREEBYTE_38;
return consume(insn, insn->opcode);
case VEX_LOB_0F3A:
insn->opcodeType = THREEBYTE_3A;
return consume(insn, insn->opcode);
case VEX_LOB_MAP4:
insn->opcodeType = MAP4;
return consume(insn, insn->opcode);
case VEX_LOB_MAP5:
insn->opcodeType = MAP5;
return consume(insn, insn->opcode);
case VEX_LOB_MAP6:
insn->opcodeType = MAP6;
return consume(insn, insn->opcode);
case VEX_LOB_MAP7:
insn->opcodeType = MAP7;
return consume(insn, insn->opcode);
}
} else if (insn->vectorExtensionType == TYPE_VEX_3B) {
switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
default:
LLVM_DEBUG(
dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
return true;
case VEX_LOB_0F:
insn->opcodeType = TWOBYTE;
return consume(insn, insn->opcode);
case VEX_LOB_0F38:
insn->opcodeType = THREEBYTE_38;
return consume(insn, insn->opcode);
case VEX_LOB_0F3A:
insn->opcodeType = THREEBYTE_3A;
return consume(insn, insn->opcode);
case VEX_LOB_MAP5:
insn->opcodeType = MAP5;
return consume(insn, insn->opcode);
case VEX_LOB_MAP6:
insn->opcodeType = MAP6;
return consume(insn, insn->opcode);
case VEX_LOB_MAP7:
insn->opcodeType = MAP7;
return consume(insn, insn->opcode);
}
} else if (insn->vectorExtensionType == TYPE_VEX_2B) {
insn->opcodeType = TWOBYTE;
return consume(insn, insn->opcode);
} else if (insn->vectorExtensionType == TYPE_XOP) {
switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
default:
LLVM_DEBUG(
dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
return true;
case XOP_MAP_SELECT_8:
insn->opcodeType = XOP8_MAP;
return consume(insn, insn->opcode);
case XOP_MAP_SELECT_9:
insn->opcodeType = XOP9_MAP;
return consume(insn, insn->opcode);
case XOP_MAP_SELECT_A:
insn->opcodeType = XOPA_MAP;
return consume(insn, insn->opcode);
}
} else if (mFromREX2(insn->rex2ExtensionPrefix[1])) {
// m bit indicates opcode map 1
insn->opcodeType = TWOBYTE;
return consume(insn, insn->opcode);
}
if (consume(insn, current))
return true;
if (current == 0x0f) {
LLVM_DEBUG(
dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
if (consume(insn, current))
return true;
if (current == 0x38) {
LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
current));
if (consume(insn, current))
return true;
insn->opcodeType = THREEBYTE_38;
} else if (current == 0x3a) {
LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
current));
if (consume(insn, current))
return true;
insn->opcodeType = THREEBYTE_3A;
} else if (current == 0x0f) {
LLVM_DEBUG(
dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
// Consume operands before the opcode to comply with the 3DNow encoding
if (readModRM(insn))
return true;
if (consume(insn, current))
return true;
insn->opcodeType = THREEDNOW_MAP;
} else {
LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
insn->opcodeType = TWOBYTE;
}
} else if (insn->mandatoryPrefix)
// The opcode with mandatory prefix must start with opcode escape.
// If not it's legacy repeat prefix
insn->mandatoryPrefix = 0;
// At this point we have consumed the full opcode.
// Anything we consume from here on must be unconsumed.
insn->opcode = current;
return false;
}
// Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
static bool is16BitEquivalent(const char *orig, const char *equiv) {
for (int i = 0;; i++) {
if (orig[i] == '\0' && equiv[i] == '\0')
return true;
if (orig[i] == '\0' || equiv[i] == '\0')
return false;
if (orig[i] != equiv[i]) {
if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
continue;
if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
continue;
if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
continue;
return false;
}
}
}
// Determine whether this instruction is a 64-bit instruction.
static bool is64Bit(const char *name) {
for (int i = 0;; ++i) {
if (name[i] == '\0')
return false;
if (name[i] == '6' && name[i + 1] == '4')
return true;
}
}
// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
// for extended and escape opcodes, and using a supplied attribute mask.
static int getInstructionIDWithAttrMask(uint16_t *instructionID,
struct InternalInstruction *insn,
uint16_t attrMask) {
auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
const ContextDecision *decision;
switch (insn->opcodeType) {
case ONEBYTE:
decision = &ONEBYTE_SYM;
break;
case TWOBYTE:
decision = &TWOBYTE_SYM;
break;
case THREEBYTE_38:
decision = &THREEBYTE38_SYM;
break;
case THREEBYTE_3A:
decision = &THREEBYTE3A_SYM;
break;
case XOP8_MAP:
decision = &XOP8_MAP_SYM;
break;
case XOP9_MAP:
decision = &XOP9_MAP_SYM;
break;
case XOPA_MAP:
decision = &XOPA_MAP_SYM;
break;
case THREEDNOW_MAP:
decision = &THREEDNOW_MAP_SYM;
break;
case MAP4:
decision = &MAP4_SYM;
break;
case MAP5:
decision = &MAP5_SYM;
break;
case MAP6:
decision = &MAP6_SYM;
break;
case MAP7:
decision = &MAP7_SYM;
break;
}
if (decision->opcodeDecisions[insnCtx]
.modRMDecisions[insn->opcode]
.modrm_type != MODRM_ONEENTRY) {
if (readModRM(insn))
return -1;
*instructionID =
decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
} else {
*instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
}
return 0;
}
static bool isCCMPOrCTEST(InternalInstruction *insn) {
if (insn->opcodeType != MAP4)
return false;
if (insn->opcode == 0x83 && regFromModRM(insn->modRM) == 7)
return true;
switch (insn->opcode & 0xfe) {
default:
return false;
case 0x38:
case 0x3a:
case 0x84:
return true;
case 0x80:
return regFromModRM(insn->modRM) == 7;
case 0xf6:
return regFromModRM(insn->modRM) == 0;
}
}
static bool isNF(InternalInstruction *insn) {
if (!nfFromEVEX4of4(insn->vectorExtensionPrefix[3]))
return false;
if (insn->opcodeType == MAP4)
return true;
// Below NF instructions are not in map4.
if (insn->opcodeType == THREEBYTE_38 &&
ppFromEVEX3of4(insn->vectorExtensionPrefix[2]) == VEX_PREFIX_NONE) {
switch (insn->opcode) {
case 0xf2: // ANDN
case 0xf3: // BLSI, BLSR, BLSMSK
case 0xf5: // BZHI
case 0xf7: // BEXTR
return true;
default:
break;
}
}
return false;
}
// Determine the ID of an instruction, consuming the ModR/M byte as appropriate
// for extended and escape opcodes. Determines the attributes and context for
// the instruction before doing so.
static int getInstructionID(struct InternalInstruction *insn,
const MCInstrInfo *mii) {
uint16_t attrMask;
uint16_t instructionID;
LLVM_DEBUG(dbgs() << "getID()");
attrMask = ATTR_NONE;
if (insn->mode == MODE_64BIT)
attrMask |= ATTR_64BIT;
if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
if (insn->vectorExtensionType == TYPE_EVEX) {
switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
attrMask |= ATTR_EVEXKZ;
if (isNF(insn) && !readModRM(insn) &&
!isCCMPOrCTEST(insn)) // NF bit is the MSB of aaa.
attrMask |= ATTR_EVEXNF;
// aaa is not used a opmask in MAP4
else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]) &&
(insn->opcodeType != MAP4))
attrMask |= ATTR_EVEXK;
if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) {
attrMask |= ATTR_EVEXB;
if (uFromEVEX3of4(insn->vectorExtensionPrefix[2]) && !readModRM(insn) &&
modFromModRM(insn->modRM) == 3)
attrMask |= ATTR_EVEXU;
}
if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
attrMask |= ATTR_VEXL;
if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
attrMask |= ATTR_EVEXL2;
} else if (insn->vectorExtensionType == TYPE_VEX_3B) {
switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
attrMask |= ATTR_VEXL;
} else if (insn->vectorExtensionType == TYPE_VEX_2B) {
switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
if (insn->hasAdSize)
attrMask |= ATTR_ADSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
attrMask |= ATTR_VEXL;
} else if (insn->vectorExtensionType == TYPE_XOP) {
switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
case VEX_PREFIX_66:
attrMask |= ATTR_OPSIZE;
break;
case VEX_PREFIX_F3:
attrMask |= ATTR_XS;
break;
case VEX_PREFIX_F2:
attrMask |= ATTR_XD;
break;
}
if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
attrMask |= ATTR_VEXL;
} else {
return -1;
}
} else if (!insn->mandatoryPrefix) {
// If we don't have mandatory prefix we should use legacy prefixes here
if (insn->hasOpSize && (insn->mode != MODE_16BIT))
attrMask |= ATTR_OPSIZE;
if (insn->hasAdSize)
attrMask |= ATTR_ADSIZE;
if (insn->opcodeType == ONEBYTE) {
if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
// Special support for PAUSE
attrMask |= ATTR_XS;
} else {
if (insn->repeatPrefix == 0xf2)
attrMask |= ATTR_XD;
else if (insn->repeatPrefix == 0xf3)
attrMask |= ATTR_XS;
}
} else {
switch (insn->mandatoryPrefix) {
case 0xf2:
attrMask |= ATTR_XD;
break;
case 0xf3:
attrMask |= ATTR_XS;
break;
case 0x66:
if (insn->mode != MODE_16BIT)
attrMask |= ATTR_OPSIZE;
if (insn->hasAdSize)
attrMask |= ATTR_ADSIZE;
break;
case 0x67:
attrMask |= ATTR_ADSIZE;
break;
}
}
if (insn->rexPrefix & 0x08) {
attrMask |= ATTR_REXW;
attrMask &= ~ATTR_ADSIZE;
}
// Absolute jump and pushp/popp need special handling
if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE &&
(insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50))
attrMask |= ATTR_REX2;
if (insn->mode == MODE_16BIT) {
// JCXZ/JECXZ need special handling for 16-bit mode because the meaning
// of the AdSize prefix is inverted w.r.t. 32-bit mode.
if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
attrMask ^= ATTR_ADSIZE;
// If we're in 16-bit mode and this is one of the relative jumps and opsize
// prefix isn't present, we need to force the opsize attribute since the
// prefix is inverted relative to 32-bit mode.
if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
(insn->opcode == 0xE8 || insn->opcode == 0xE9))
attrMask |= ATTR_OPSIZE;
if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
insn->opcode >= 0x80 && insn->opcode <= 0x8F)
attrMask |= ATTR_OPSIZE;
}
if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
return -1;
// The following clauses compensate for limitations of the tables.
if (insn->mode != MODE_64BIT &&
insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
// The tables can't distinquish between cases where the W-bit is used to
// select register size and cases where its a required part of the opcode.
if ((insn->vectorExtensionType == TYPE_EVEX &&
wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
(insn->vectorExtensionType == TYPE_VEX_3B &&
wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
(insn->vectorExtensionType == TYPE_XOP &&
wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
uint16_t instructionIDWithREXW;
if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
attrMask | ATTR_REXW)) {
insn->instructionID = instructionID;
insn->spec = &INSTRUCTIONS_SYM[instructionID];
return 0;
}
auto SpecName = mii->getName(instructionIDWithREXW);
// If not a 64-bit instruction. Switch the opcode.
if (!is64Bit(SpecName.data())) {
insn->instructionID = instructionIDWithREXW;
insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
return 0;
}
}
}
// Absolute moves, umonitor, and movdir64b need special handling.
// -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
// inverted w.r.t.
// -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
// any position.
if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
(insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
(insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) ||
(insn->opcodeType == MAP4 && insn->opcode == 0xF8)) {
// Make sure we observed the prefixes in any position.
if (insn->hasAdSize)
attrMask |= ATTR_ADSIZE;
if (insn->hasOpSize)
attrMask |= ATTR_OPSIZE;
// In 16-bit, invert the attributes.
if (insn->mode == MODE_16BIT) {
attrMask ^= ATTR_ADSIZE;
// The OpSize attribute is only valid with the absolute moves.
if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
attrMask ^= ATTR_OPSIZE;
}
if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
return -1;
insn->instructionID = instructionID;
insn->spec = &INSTRUCTIONS_SYM[instructionID];
return 0;
}
if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
!(attrMask & ATTR_OPSIZE)) {
// The instruction tables make no distinction between instructions that
// allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
// particular spot (i.e., many MMX operations). In general we're
// conservative, but in the specific case where OpSize is present but not in
// the right place we check if there's a 16-bit operation.
const struct InstructionSpecifier *spec;
uint16_t instructionIDWithOpsize;
llvm::StringRef specName, specWithOpSizeName;
spec = &INSTRUCTIONS_SYM[instructionID];
if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
attrMask | ATTR_OPSIZE)) {
// ModRM required with OpSize but not present. Give up and return the
// version without OpSize set.
insn->instructionID = instructionID;
insn->spec = spec;
return 0;
}
specName = mii->getName(instructionID);
specWithOpSizeName = mii->getName(instructionIDWithOpsize);
if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
(insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
insn->instructionID = instructionIDWithOpsize;
insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
} else {
insn->instructionID = instructionID;
insn->spec = spec;
}
return 0;
}
if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
insn->rexPrefix & 0x01) {
// NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
// as XCHG %r8, %eax.
const struct InstructionSpecifier *spec;
uint16_t instructionIDWithNewOpcode;
const struct InstructionSpecifier *specWithNewOpcode;
spec = &INSTRUCTIONS_SYM[instructionID];
// Borrow opcode from one of the other XCHGar opcodes
insn->opcode = 0x91;
if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
attrMask)) {
insn->opcode = 0x90;
insn->instructionID = instructionID;
insn->spec = spec;
return 0;
}
specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
// Change back
insn->opcode = 0x90;
insn->instructionID = instructionIDWithNewOpcode;
insn->spec = specWithNewOpcode;
return 0;
}
insn->instructionID = instructionID;
insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
return 0;
}
// Read an operand from the opcode field of an instruction and interprets it
// appropriately given the operand width. Handles AddRegFrm instructions.
//
// @param insn - the instruction whose opcode field is to be read.
// @param size - The width (in bytes) of the register being specified.
// 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
// RAX.
// @return - 0 on success; nonzero otherwise.
static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
if (size == 0)
size = insn->registerSize;
auto setOpcodeRegister = [&](unsigned base) {
insn->opcodeRegister =
(Reg)(base + ((bFromREX(insn->rexPrefix) << 3) |
(b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) |
(insn->opcode & 7)));
};
switch (size) {
case 1:
setOpcodeRegister(MODRM_REG_AL);
if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
insn->opcodeRegister < MODRM_REG_AL + 0x8) {
insn->opcodeRegister =
(Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
}
break;
case 2:
setOpcodeRegister(MODRM_REG_AX);
break;
case 4:
setOpcodeRegister(MODRM_REG_EAX);
break;
case 8:
setOpcodeRegister(MODRM_REG_RAX);
break;
}
return 0;
}
// Consume an immediate operand from an instruction, given the desired operand
// size.
//
// @param insn - The instruction whose operand is to be read.
// @param size - The width (in bytes) of the operand.
// @return - 0 if the immediate was successfully consumed; nonzero
// otherwise.
static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
uint8_t imm8;
uint16_t imm16;
uint32_t imm32;
uint64_t imm64;
LLVM_DEBUG(dbgs() << "readImmediate()");
assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
insn->immediateSize = size;
insn->immediateOffset = insn->readerCursor - insn->startLocation;
switch (size) {
case 1:
if (consume(insn, imm8))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm8;
break;
case 2:
if (consume(insn, imm16))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm16;
break;
case 4:
if (consume(insn, imm32))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm32;
break;
case 8:
if (consume(insn, imm64))
return -1;
insn->immediates[insn->numImmediatesConsumed] = imm64;
break;
default:
llvm_unreachable("invalid size");
}
insn->numImmediatesConsumed++;
return 0;
}
// Consume vvvv from an instruction if it has a VEX prefix.
static int readVVVV(struct InternalInstruction *insn) {
LLVM_DEBUG(dbgs() << "readVVVV()");
int vvvv;
if (insn->vectorExtensionType == TYPE_EVEX)
vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
else if (insn->vectorExtensionType == TYPE_VEX_3B)
vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
else if (insn->vectorExtensionType == TYPE_VEX_2B)
vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
else if (insn->vectorExtensionType == TYPE_XOP)
vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
else
return -1;
if (insn->mode != MODE_64BIT)
vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
insn->vvvv = static_cast<Reg>(vvvv);
return 0;
}
// Read an mask register from the opcode field of an instruction.
//
// @param insn - The instruction whose opcode field is to be read.
// @return - 0 on success; nonzero otherwise.
static int readMaskRegister(struct InternalInstruction *insn) {
LLVM_DEBUG(dbgs() << "readMaskRegister()");
if (insn->vectorExtensionType != TYPE_EVEX)
return -1;
insn->writemask =
static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
return 0;
}
// Consults the specifier for an instruction and consumes all
// operands for that instruction, interpreting them as it goes.
static int readOperands(struct InternalInstruction *insn) {
int hasVVVV, needVVVV;
int sawRegImm = 0;
LLVM_DEBUG(dbgs() << "readOperands()");
// If non-zero vvvv specified, make sure one of the operands uses it.
hasVVVV = !readVVVV(insn);
needVVVV = hasVVVV && (insn->vvvv != 0);
for (const auto &Op : x86OperandSets[insn->spec->operands]) {
switch (Op.encoding) {
case ENCODING_NONE:
case ENCODING_SI:
case ENCODING_DI:
break;
CASE_ENCODING_VSIB:
// VSIB can use the V2 bit so check only the other bits.
if (needVVVV)
needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
if (readModRM(insn))
return -1;
// Reject if SIB wasn't used.
if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
return -1;
// If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
if (insn->sibIndex == SIB_INDEX_NONE)
insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
// If EVEX.v2 is set this is one of the 16-31 registers.
if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
// Adjust the index register to the correct size.
switch ((OperandType)Op.type) {
default:
debug("Unhandled VSIB index type");
return -1;
case TYPE_MVSIBX:
insn->sibIndex =
(SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
break;
case TYPE_MVSIBY:
insn->sibIndex =
(SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
break;
case TYPE_MVSIBZ:
insn->sibIndex =
(SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
break;
}
// Apply the AVX512 compressed displacement scaling factor.
if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
break;
case ENCODING_SIB:
// Reject if SIB wasn't used.
if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
return -1;
if (readModRM(insn))
return -1;
if (fixupReg(insn, &Op))
return -1;
break;
case ENCODING_REG:
CASE_ENCODING_RM:
if (readModRM(insn))
return -1;
if (fixupReg(insn, &Op))
return -1;
// Apply the AVX512 compressed displacement scaling factor.
if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
break;
case ENCODING_IB:
if (sawRegImm) {
// Saw a register immediate so don't read again and instead split the
// previous immediate. FIXME: This is a hack.
insn->immediates[insn->numImmediatesConsumed] =
insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
++insn->numImmediatesConsumed;
break;
}
if (readImmediate(insn, 1))
return -1;
if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
sawRegImm = 1;
break;
case ENCODING_IW:
if (readImmediate(insn, 2))
return -1;
break;
case ENCODING_ID:
if (readImmediate(insn, 4))
return -1;
break;
case ENCODING_IO:
if (readImmediate(insn, 8))
return -1;
break;
case ENCODING_Iv:
if (readImmediate(insn, insn->immediateSize))
return -1;
break;
case ENCODING_Ia:
if (readImmediate(insn, insn->addressSize))
return -1;
break;
case ENCODING_IRC:
insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
break;
case ENCODING_RB:
if (readOpcodeRegister(insn, 1))
return -1;
break;
case ENCODING_RW:
if (readOpcodeRegister(insn, 2))
return -1;
break;
case ENCODING_RD:
if (readOpcodeRegister(insn, 4))
return -1;
break;
case ENCODING_RO:
if (readOpcodeRegister(insn, 8))
return -1;
break;
case ENCODING_Rv:
if (readOpcodeRegister(insn, 0))
return -1;
break;
case ENCODING_CF:
insn->immediates[1] = oszcFromEVEX3of4(insn->vectorExtensionPrefix[2]);
needVVVV = false; // oszc shares the same bits with VVVV
break;
case ENCODING_CC:
if (isCCMPOrCTEST(insn))
insn->immediates[2] = scFromEVEX4of4(insn->vectorExtensionPrefix[3]);
else
insn->immediates[1] = insn->opcode & 0xf;
break;
case ENCODING_FP:
break;
case ENCODING_VVVV:
needVVVV = 0; // Mark that we have found a VVVV operand.
if (!hasVVVV)
return -1;
if (insn->mode != MODE_64BIT)
insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
if (fixupReg(insn, &Op))
return -1;
break;
case ENCODING_WRITEMASK:
if (readMaskRegister(insn))
return -1;
break;
case ENCODING_DUP:
break;
default:
LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
return -1;
}
}
// If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
if (needVVVV)
return -1;
return 0;
}
namespace llvm {
// Fill-ins to make the compiler happy. These constants are never actually
// assigned; they are just filler to make an automatically-generated switch
// statement work.
namespace X86 {
enum {
BX_SI = 500,
BX_DI = 501,
BP_SI = 502,
BP_DI = 503,
sib = 504,
sib64 = 505
};
} // namespace X86
} // namespace llvm
static bool translateInstruction(MCInst &target,
InternalInstruction &source,
const MCDisassembler *Dis);
namespace {
/// Generic disassembler for all X86 platforms. All each platform class should
/// have to do is subclass the constructor, and provide a different
/// disassemblerMode value.
class X86GenericDisassembler : public MCDisassembler {
std::unique_ptr<const MCInstrInfo> MII;
public:
X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
std::unique_ptr<const MCInstrInfo> MII);
public:
DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &cStream) const override;
private:
DisassemblerMode fMode;
};
} // namespace
X86GenericDisassembler::X86GenericDisassembler(
const MCSubtargetInfo &STI,
MCContext &Ctx,
std::unique_ptr<const MCInstrInfo> MII)
: MCDisassembler(STI, Ctx), MII(std::move(MII)) {
const FeatureBitset &FB = STI.getFeatureBits();
if (FB[X86::Is16Bit]) {
fMode = MODE_16BIT;
return;
} else if (FB[X86::Is32Bit]) {
fMode = MODE_32BIT;
return;
} else if (FB[X86::Is64Bit]) {
fMode = MODE_64BIT;
return;
}
llvm_unreachable("Invalid CPU mode");
}
MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &CStream) const {
CommentStream = &CStream;
InternalInstruction Insn;
memset(&Insn, 0, sizeof(InternalInstruction));
Insn.bytes = Bytes;
Insn.startLocation = Address;
Insn.readerCursor = Address;
Insn.mode = fMode;
if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
readOperands(&Insn)) {
Size = Insn.readerCursor - Address;
return Fail;
}
Insn.operands = x86OperandSets[Insn.spec->operands];
Insn.length = Insn.readerCursor - Insn.startLocation;
Size = Insn.length;
if (Size > 15)
LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
bool Ret = translateInstruction(Instr, Insn, this);
if (!Ret) {
unsigned Flags = X86::IP_NO_PREFIX;
if (Insn.hasAdSize)
Flags |= X86::IP_HAS_AD_SIZE;
if (!Insn.mandatoryPrefix) {
if (Insn.hasOpSize)
Flags |= X86::IP_HAS_OP_SIZE;
if (Insn.repeatPrefix == 0xf2)
Flags |= X86::IP_HAS_REPEAT_NE;
else if (Insn.repeatPrefix == 0xf3 &&
// It should not be 'pause' f3 90
Insn.opcode != 0x90)
Flags |= X86::IP_HAS_REPEAT;
if (Insn.hasLockPrefix)
Flags |= X86::IP_HAS_LOCK;
}
Instr.setFlags(Flags);
}
return (!Ret) ? Success : Fail;
}
//
// Private code that translates from struct InternalInstructions to MCInsts.
//
/// translateRegister - Translates an internal register to the appropriate LLVM
/// register, and appends it as an operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param reg - The Reg to append.
static void translateRegister(MCInst &mcInst, Reg reg) {
#define ENTRY(x) X86::x,
static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
#undef ENTRY
MCPhysReg llvmRegnum = llvmRegnums[reg];
mcInst.addOperand(MCOperand::createReg(llvmRegnum));
}
static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
0, // SEG_OVERRIDE_NONE
X86::CS,
X86::SS,
X86::DS,
X86::ES,
X86::FS,
X86::GS
};
/// translateSrcIndex - Appends a source index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
unsigned baseRegNo;
if (insn.mode == MODE_64BIT)
baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
else if (insn.mode == MODE_32BIT)
baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
else {
assert(insn.mode == MODE_16BIT);
baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
}
MCOperand baseReg = MCOperand::createReg(baseRegNo);
mcInst.addOperand(baseReg);
MCOperand segmentReg;
segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
mcInst.addOperand(segmentReg);
return false;
}
/// translateDstIndex - Appends a destination index operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction.
static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
unsigned baseRegNo;
if (insn.mode == MODE_64BIT)
baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
else if (insn.mode == MODE_32BIT)
baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
else {
assert(insn.mode == MODE_16BIT);
baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
}
MCOperand baseReg = MCOperand::createReg(baseRegNo);
mcInst.addOperand(baseReg);
return false;
}
/// translateImmediate - Appends an immediate operand to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param immediate - The immediate value to append.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
static void translateImmediate(MCInst &mcInst, uint64_t immediate,
const OperandSpecifier &operand,
InternalInstruction &insn,
const MCDisassembler *Dis) {
// Sign-extend the immediate if necessary.
OperandType type = (OperandType)operand.type;
bool isBranch = false;
uint64_t pcrel = 0;
if (type == TYPE_REL) {
isBranch = true;
pcrel = insn.startLocation + insn.length;
switch (operand.encoding) {
default:
break;
case ENCODING_Iv:
switch (insn.displacementSize) {
default:
break;
case 1:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case 2:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case 4:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case 8:
break;
}
break;
case ENCODING_IB:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
}
}
// By default sign-extend all X86 immediates based on their encoding.
else if (type == TYPE_IMM) {
switch (operand.encoding) {
default:
break;
case ENCODING_IB:
if(immediate & 0x80)
immediate |= ~(0xffull);
break;
case ENCODING_IW:
if(immediate & 0x8000)
immediate |= ~(0xffffull);
break;
case ENCODING_ID:
if(immediate & 0x80000000)
immediate |= ~(0xffffffffull);
break;
case ENCODING_IO:
break;
}
}
switch (type) {
case TYPE_XMM:
mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
return;
case TYPE_YMM:
mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
return;
case TYPE_ZMM:
mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
return;
default:
// operand is 64 bits wide. Do nothing.
break;
}
if (!Dis->tryAddingSymbolicOperand(
mcInst, immediate + pcrel, insn.startLocation, isBranch,
insn.immediateOffset, insn.immediateSize, insn.length))
mcInst.addOperand(MCOperand::createImm(immediate));
if (type == TYPE_MOFFS) {
MCOperand segmentReg;
segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
mcInst.addOperand(segmentReg);
}
}
/// translateRMRegister - Translates a register stored in the R/M field of the
/// ModR/M byte to its LLVM equivalent and appends it to an MCInst.
/// @param mcInst - The MCInst to append to.
/// @param insn - The internal instruction to extract the R/M field
/// from.
/// @return - 0 on success; -1 otherwise
static bool translateRMRegister(MCInst &mcInst,
InternalInstruction &insn) {
if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
debug("A R/M register operand may not have a SIB byte");
return true;
}
switch (insn.eaBase) {
default:
debug("Unexpected EA base register");
return true;
case EA_BASE_NONE:
debug("EA_BASE_NONE for ModR/M base");
return true;
#define ENTRY(x) case EA_BASE_##x:
ALL_EA_BASES
#undef ENTRY
debug("A R/M register operand may not have a base; "
"the operand must be a register.");
return true;
#define ENTRY(x) \
case EA_REG_##x: \
mcInst.addOperand(MCOperand::createReg(X86::x)); break;
ALL_REGS
#undef ENTRY
}
return false;
}
/// translateRMMemory - Translates a memory operand stored in the Mod and R/M
/// fields of an internal instruction (and possibly its SIB byte) to a memory
/// operand in LLVM's format, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @param ForceSIB - The instruction must use SIB.
/// @return - 0 on success; nonzero otherwise
static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
const MCDisassembler *Dis,
bool ForceSIB = false) {
// Addresses in an MCInst are represented as five operands:
// 1. basereg (register) The R/M base, or (if there is a SIB) the
// SIB base
// 2. scaleamount (immediate) 1, or (if there is a SIB) the specified
// scale amount
// 3. indexreg (register) x86_registerNONE, or (if there is a SIB)
// the index (which is multiplied by the
// scale amount)
// 4. displacement (immediate) 0, or the displacement if there is one
// 5. segmentreg (register) x86_registerNONE for now, but could be set
// if we have segment overrides
MCOperand baseReg;
MCOperand scaleAmount;
MCOperand indexReg;
MCOperand displacement;
MCOperand segmentReg;
uint64_t pcrel = 0;
if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
if (insn.sibBase != SIB_BASE_NONE) {
switch (insn.sibBase) {
default:
debug("Unexpected sibBase");
return true;
#define ENTRY(x) \
case SIB_BASE_##x: \
baseReg = MCOperand::createReg(X86::x); break;
ALL_SIB_BASES
#undef ENTRY
}
} else {
baseReg = MCOperand::createReg(X86::NoRegister);
}
if (insn.sibIndex != SIB_INDEX_NONE) {
switch (insn.sibIndex) {
default:
debug("Unexpected sibIndex");
return true;
#define ENTRY(x) \
case SIB_INDEX_##x: \
indexReg = MCOperand::createReg(X86::x); break;
EA_BASES_32BIT
EA_BASES_64BIT
REGS_XMM
REGS_YMM
REGS_ZMM
#undef ENTRY
}
} else {
// Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
// but no index is used and modrm alone should have been enough.
// -No base register in 32-bit mode. In 64-bit mode this is used to
// avoid rip-relative addressing.
// -Any base register used other than ESP/RSP/R12D/R12. Using these as a
// base always requires a SIB byte.
// -A scale other than 1 is used.
if (!ForceSIB &&
(insn.sibScale != 1 ||
(insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
(insn.sibBase != SIB_BASE_NONE &&
insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
X86::RIZ);
} else
indexReg = MCOperand::createReg(X86::NoRegister);
}
scaleAmount = MCOperand::createImm(insn.sibScale);
} else {
switch (insn.eaBase) {
case EA_BASE_NONE:
if (insn.eaDisplacement == EA_DISP_NONE) {
debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
return true;
}
if (insn.mode == MODE_64BIT){
pcrel = insn.startLocation + insn.length;
Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel,
insn.startLocation +
insn.displacementOffset);
// Section 2.2.1.6
baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
X86::RIP);
}
else
baseReg = MCOperand::createReg(X86::NoRegister);
indexReg = MCOperand::createReg(X86::NoRegister);
break;
case EA_BASE_BX_SI:
baseReg = MCOperand::createReg(X86::BX);
indexReg = MCOperand::createReg(X86::SI);
break;
case EA_BASE_BX_DI:
baseReg = MCOperand::createReg(X86::BX);
indexReg = MCOperand::createReg(X86::DI);
break;
case EA_BASE_BP_SI:
baseReg = MCOperand::createReg(X86::BP);
indexReg = MCOperand::createReg(X86::SI);
break;
case EA_BASE_BP_DI:
baseReg = MCOperand::createReg(X86::BP);
indexReg = MCOperand::createReg(X86::DI);
break;
default:
indexReg = MCOperand::createReg(X86::NoRegister);
switch (insn.eaBase) {
default:
debug("Unexpected eaBase");
return true;
// Here, we will use the fill-ins defined above. However,
// BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
// sib and sib64 were handled in the top-level if, so they're only
// placeholders to keep the compiler happy.
#define ENTRY(x) \
case EA_BASE_##x: \
baseReg = MCOperand::createReg(X86::x); break;
ALL_EA_BASES
#undef ENTRY
#define ENTRY(x) case EA_REG_##x:
ALL_REGS
#undef ENTRY
debug("A R/M memory operand may not be a register; "
"the base field must be a base.");
return true;
}
}
scaleAmount = MCOperand::createImm(1);
}
displacement = MCOperand::createImm(insn.displacement);
segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
mcInst.addOperand(baseReg);
mcInst.addOperand(scaleAmount);
mcInst.addOperand(indexReg);
const uint8_t dispSize =
(insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
if (!Dis->tryAddingSymbolicOperand(
mcInst, insn.displacement + pcrel, insn.startLocation, false,
insn.displacementOffset, dispSize, insn.length))
mcInst.addOperand(displacement);
mcInst.addOperand(segmentReg);
return false;
}
/// translateRM - Translates an operand stored in the R/M (and possibly SIB)
/// byte of an instruction to LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The instruction to extract Mod, R/M, and SIB fields
/// from.
/// @return - 0 on success; nonzero otherwise
static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
InternalInstruction &insn, const MCDisassembler *Dis) {
switch (operand.type) {
default:
debug("Unexpected type for a R/M operand");
return true;
case TYPE_R8:
case TYPE_R16:
case TYPE_R32:
case TYPE_R64:
case TYPE_Rv:
case TYPE_MM64:
case TYPE_XMM:
case TYPE_YMM:
case TYPE_ZMM:
case TYPE_TMM:
case TYPE_TMM_PAIR:
case TYPE_VK_PAIR:
case TYPE_VK:
case TYPE_DEBUGREG:
case TYPE_CONTROLREG:
case TYPE_BNDR:
return translateRMRegister(mcInst, insn);
case TYPE_M:
case TYPE_MVSIBX:
case TYPE_MVSIBY:
case TYPE_MVSIBZ:
return translateRMMemory(mcInst, insn, Dis);
case TYPE_MSIB:
return translateRMMemory(mcInst, insn, Dis, true);
}
}
/// translateFPRegister - Translates a stack position on the FPU stack to its
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param stackPos - The stack position to translate.
static void translateFPRegister(MCInst &mcInst,
uint8_t stackPos) {
mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
}
/// translateMaskRegister - Translates a 3-bit mask register number to
/// LLVM form, and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param maskRegNum - Number of mask register from 0 to 7.
/// @return - false on success; true otherwise.
static bool translateMaskRegister(MCInst &mcInst,
uint8_t maskRegNum) {
if (maskRegNum >= 8) {
debug("Invalid mask register number");
return true;
}
mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
return false;
}
/// translateOperand - Translates an operand stored in an internal instruction
/// to LLVM's format and appends it to an MCInst.
///
/// @param mcInst - The MCInst to append to.
/// @param operand - The operand, as stored in the descriptor table.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
InternalInstruction &insn,
const MCDisassembler *Dis) {
switch (operand.encoding) {
default:
debug("Unhandled operand encoding during translation");
return true;
case ENCODING_REG:
translateRegister(mcInst, insn.reg);
return false;
case ENCODING_WRITEMASK:
return translateMaskRegister(mcInst, insn.writemask);
case ENCODING_SIB:
CASE_ENCODING_RM:
CASE_ENCODING_VSIB:
return translateRM(mcInst, operand, insn, Dis);
case ENCODING_IB:
case ENCODING_IW:
case ENCODING_ID:
case ENCODING_IO:
case ENCODING_Iv:
case ENCODING_Ia:
translateImmediate(mcInst,
insn.immediates[insn.numImmediatesTranslated++],
operand,
insn,
Dis);
return false;
case ENCODING_IRC:
mcInst.addOperand(MCOperand::createImm(insn.RC));
return false;
case ENCODING_SI:
return translateSrcIndex(mcInst, insn);
case ENCODING_DI:
return translateDstIndex(mcInst, insn);
case ENCODING_RB:
case ENCODING_RW:
case ENCODING_RD:
case ENCODING_RO:
case ENCODING_Rv:
translateRegister(mcInst, insn.opcodeRegister);
return false;
case ENCODING_CF:
mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
return false;
case ENCODING_CC:
if (isCCMPOrCTEST(&insn))
mcInst.addOperand(MCOperand::createImm(insn.immediates[2]));
else
mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
return false;
case ENCODING_FP:
translateFPRegister(mcInst, insn.modRM & 7);
return false;
case ENCODING_VVVV:
translateRegister(mcInst, insn.vvvv);
return false;
case ENCODING_DUP:
return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
insn, Dis);
}
}
/// translateInstruction - Translates an internal instruction and all its
/// operands to an MCInst.
///
/// @param mcInst - The MCInst to populate with the instruction's data.
/// @param insn - The internal instruction.
/// @return - false on success; true otherwise.
static bool translateInstruction(MCInst &mcInst,
InternalInstruction &insn,
const MCDisassembler *Dis) {
if (!insn.spec) {
debug("Instruction has no specification");
return true;
}
mcInst.clear();
mcInst.setOpcode(insn.instructionID);
// If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
// prefix bytes should be disassembled as xrelease and xacquire then set the
// opcode to those instead of the rep and repne opcodes.
if (insn.xAcquireRelease) {
if(mcInst.getOpcode() == X86::REP_PREFIX)
mcInst.setOpcode(X86::XRELEASE_PREFIX);
else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
mcInst.setOpcode(X86::XACQUIRE_PREFIX);
}
insn.numImmediatesTranslated = 0;
for (const auto &Op : insn.operands) {
if (Op.encoding != ENCODING_NONE) {
if (translateOperand(mcInst, Op, insn, Dis)) {
return true;
}
}
}
return false;
}
static MCDisassembler *createX86Disassembler(const Target &T,
const MCSubtargetInfo &STI,
MCContext &Ctx) {
std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
return new X86GenericDisassembler(STI, Ctx, std::move(MII));
}
extern "C" LLVM_C_ABI void LLVMInitializeX86Disassembler() {
// Register the disassembler.
TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
createX86Disassembler);
TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
createX86Disassembler);
}