
Adds support for emitting Windows x64 Unwind V2 information, includes support `/d2epilogunwind` in clang-cl. Unwind v2 adds information about the epilogs in functions such that the unwinder can unwind even in the middle of an epilog, without having to disassembly the function to see what has or has not been cleaned up. Unwind v2 requires that all epilogs are in "canonical" form: * If there was a stack allocation (fixed or dynamic) in the prolog, then the first instruction in the epilog must be a stack deallocation. * Next, for each `PUSH` in the prolog there must be a corresponding `POP` instruction in exact reverse order. * Finally, the epilog must end with the terminator. This change adds a pass to validate epilogs in modules that have Unwind v2 enabled and, if they pass, emits new pseudo instructions to MC that 1) note that the function is using unwind v2 and 2) mark the start of the epilog (this is either the first `POP` if there is one, otherwise the terminator instruction). If a function does not meet these requirements, it is downgraded to Unwind v1 (i.e., these new pseudo instructions are not emitted). Note that the unwind v2 table only marks the size of the epilog in the "header" unwind code, but it's possible for epilogs to use different terminator instructions thus they are not all the same size. As a work around for this, MC will assume that all terminator instructions are 1-byte long - this still works correctly with the Windows unwinder as it is only using the size to do a range check to see if a thread is in an epilog or not, and since the instruction pointer will never be in the middle of an instruction and the terminator is always at the end of an epilog the range check will function correctly. This does mean, however, that the "at end" optimization (where an epilog unwind code can be elided if the last epilog is at the end of the function) can only be used if the terminator is 1-byte long. One other complication with the implementation is that the unwind table for a function is emitted during streaming, however we can't calculate the distance between an epilog and the end of the function at that time as layout hasn't been completed yet (thus some instructions may be relaxed). To work around this, epilog unwind codes are emitted via a fixup. This also means that we can't pre-emptively downgrade a function to Unwind v1 if one of these offsets is too large, so instead we raise an error (but I've passed through the location information, so the user will know which of their functions is problematic).
2836 lines
96 KiB
C++
2836 lines
96 KiB
C++
//===- lib/MC/MCWin64EH.cpp - MCWin64EH implementation --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MC/MCWin64EH.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCObjectStreamer.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/Support/Win64EH.h"
|
|
|
|
namespace llvm {
|
|
class MCSection;
|
|
|
|
/// MCExpr that represents the epilog unwind code in an unwind table.
|
|
class MCUnwindV2EpilogTargetExpr final : public MCTargetExpr {
|
|
const MCSymbol *FunctionEnd;
|
|
const MCSymbol *UnwindV2Start;
|
|
const MCSymbol *EpilogEnd;
|
|
uint8_t EpilogSize;
|
|
SMLoc Loc;
|
|
|
|
MCUnwindV2EpilogTargetExpr(const WinEH::FrameInfo &FrameInfo,
|
|
const WinEH::FrameInfo::Epilog &Epilog,
|
|
uint8_t EpilogSize_)
|
|
: FunctionEnd(FrameInfo.FuncletOrFuncEnd),
|
|
UnwindV2Start(Epilog.UnwindV2Start), EpilogEnd(Epilog.End),
|
|
EpilogSize(EpilogSize_), Loc(Epilog.Loc) {}
|
|
|
|
public:
|
|
static MCUnwindV2EpilogTargetExpr *
|
|
create(const WinEH::FrameInfo &FrameInfo,
|
|
const WinEH::FrameInfo::Epilog &Epilog, uint8_t EpilogSize_,
|
|
MCContext &Ctx) {
|
|
return new (Ctx) MCUnwindV2EpilogTargetExpr(FrameInfo, Epilog, EpilogSize_);
|
|
}
|
|
|
|
void printImpl(raw_ostream &OS, const MCAsmInfo *MAI) const override {
|
|
OS << ":epilog:";
|
|
UnwindV2Start->print(OS, MAI);
|
|
}
|
|
|
|
bool evaluateAsRelocatableImpl(MCValue &Res,
|
|
const MCAssembler *Asm) const override;
|
|
|
|
void visitUsedExpr(MCStreamer &Streamer) const override {
|
|
// Contains no sub-expressions.
|
|
}
|
|
|
|
MCFragment *findAssociatedFragment() const override {
|
|
return UnwindV2Start->getFragment();
|
|
}
|
|
};
|
|
}
|
|
|
|
using namespace llvm;
|
|
|
|
// NOTE: All relocations generated here are 4-byte image-relative.
|
|
|
|
static uint8_t CountOfUnwindCodes(std::vector<WinEH::Instruction> &Insns) {
|
|
uint8_t Count = 0;
|
|
for (const auto &I : Insns) {
|
|
switch (static_cast<Win64EH::UnwindOpcodes>(I.Operation)) {
|
|
default:
|
|
llvm_unreachable("Unsupported unwind code");
|
|
case Win64EH::UOP_PushNonVol:
|
|
case Win64EH::UOP_AllocSmall:
|
|
case Win64EH::UOP_SetFPReg:
|
|
case Win64EH::UOP_PushMachFrame:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_SaveNonVol:
|
|
case Win64EH::UOP_SaveXMM128:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveNonVolBig:
|
|
case Win64EH::UOP_SaveXMM128Big:
|
|
Count += 3;
|
|
break;
|
|
case Win64EH::UOP_AllocLarge:
|
|
Count += (I.Offset > 512 * 1024 - 8) ? 3 : 2;
|
|
break;
|
|
}
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
static void EmitAbsDifference(MCStreamer &Streamer, const MCSymbol *LHS,
|
|
const MCSymbol *RHS) {
|
|
MCContext &Context = Streamer.getContext();
|
|
const MCExpr *Diff =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(LHS, Context),
|
|
MCSymbolRefExpr::create(RHS, Context), Context);
|
|
Streamer.emitValue(Diff, 1);
|
|
}
|
|
|
|
static void EmitUnwindCode(MCStreamer &streamer, const MCSymbol *begin,
|
|
WinEH::Instruction &inst) {
|
|
uint8_t b2;
|
|
uint16_t w;
|
|
b2 = (inst.Operation & 0x0F);
|
|
switch (static_cast<Win64EH::UnwindOpcodes>(inst.Operation)) {
|
|
default:
|
|
llvm_unreachable("Unsupported unwind code");
|
|
case Win64EH::UOP_PushNonVol:
|
|
EmitAbsDifference(streamer, inst.Label, begin);
|
|
b2 |= (inst.Register & 0x0F) << 4;
|
|
streamer.emitInt8(b2);
|
|
break;
|
|
case Win64EH::UOP_AllocLarge:
|
|
EmitAbsDifference(streamer, inst.Label, begin);
|
|
if (inst.Offset > 512 * 1024 - 8) {
|
|
b2 |= 0x10;
|
|
streamer.emitInt8(b2);
|
|
w = inst.Offset & 0xFFF8;
|
|
streamer.emitInt16(w);
|
|
w = inst.Offset >> 16;
|
|
} else {
|
|
streamer.emitInt8(b2);
|
|
w = inst.Offset >> 3;
|
|
}
|
|
streamer.emitInt16(w);
|
|
break;
|
|
case Win64EH::UOP_AllocSmall:
|
|
b2 |= (((inst.Offset - 8) >> 3) & 0x0F) << 4;
|
|
EmitAbsDifference(streamer, inst.Label, begin);
|
|
streamer.emitInt8(b2);
|
|
break;
|
|
case Win64EH::UOP_SetFPReg:
|
|
EmitAbsDifference(streamer, inst.Label, begin);
|
|
streamer.emitInt8(b2);
|
|
break;
|
|
case Win64EH::UOP_SaveNonVol:
|
|
case Win64EH::UOP_SaveXMM128:
|
|
b2 |= (inst.Register & 0x0F) << 4;
|
|
EmitAbsDifference(streamer, inst.Label, begin);
|
|
streamer.emitInt8(b2);
|
|
w = inst.Offset >> 3;
|
|
if (inst.Operation == Win64EH::UOP_SaveXMM128)
|
|
w >>= 1;
|
|
streamer.emitInt16(w);
|
|
break;
|
|
case Win64EH::UOP_SaveNonVolBig:
|
|
case Win64EH::UOP_SaveXMM128Big:
|
|
b2 |= (inst.Register & 0x0F) << 4;
|
|
EmitAbsDifference(streamer, inst.Label, begin);
|
|
streamer.emitInt8(b2);
|
|
if (inst.Operation == Win64EH::UOP_SaveXMM128Big)
|
|
w = inst.Offset & 0xFFF0;
|
|
else
|
|
w = inst.Offset & 0xFFF8;
|
|
streamer.emitInt16(w);
|
|
w = inst.Offset >> 16;
|
|
streamer.emitInt16(w);
|
|
break;
|
|
case Win64EH::UOP_PushMachFrame:
|
|
if (inst.Offset == 1)
|
|
b2 |= 0x10;
|
|
EmitAbsDifference(streamer, inst.Label, begin);
|
|
streamer.emitInt8(b2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void EmitSymbolRefWithOfs(MCStreamer &streamer,
|
|
const MCSymbol *Base,
|
|
int64_t Offset) {
|
|
MCContext &Context = streamer.getContext();
|
|
const MCConstantExpr *OffExpr = MCConstantExpr::create(Offset, Context);
|
|
const MCSymbolRefExpr *BaseRefRel = MCSymbolRefExpr::create(Base,
|
|
MCSymbolRefExpr::VK_COFF_IMGREL32,
|
|
Context);
|
|
streamer.emitValue(MCBinaryExpr::createAdd(BaseRefRel, OffExpr, Context), 4);
|
|
}
|
|
|
|
static void EmitSymbolRefWithOfs(MCStreamer &streamer,
|
|
const MCSymbol *Base,
|
|
const MCSymbol *Other) {
|
|
MCContext &Context = streamer.getContext();
|
|
const MCSymbolRefExpr *BaseRef = MCSymbolRefExpr::create(Base, Context);
|
|
const MCSymbolRefExpr *OtherRef = MCSymbolRefExpr::create(Other, Context);
|
|
const MCExpr *Ofs = MCBinaryExpr::createSub(OtherRef, BaseRef, Context);
|
|
const MCSymbolRefExpr *BaseRefRel = MCSymbolRefExpr::create(Base,
|
|
MCSymbolRefExpr::VK_COFF_IMGREL32,
|
|
Context);
|
|
streamer.emitValue(MCBinaryExpr::createAdd(BaseRefRel, Ofs, Context), 4);
|
|
}
|
|
|
|
static void EmitRuntimeFunction(MCStreamer &streamer,
|
|
const WinEH::FrameInfo *info) {
|
|
MCContext &context = streamer.getContext();
|
|
|
|
streamer.emitValueToAlignment(Align(4));
|
|
EmitSymbolRefWithOfs(streamer, info->Begin, info->Begin);
|
|
EmitSymbolRefWithOfs(streamer, info->Begin, info->End);
|
|
streamer.emitValue(MCSymbolRefExpr::create(info->Symbol,
|
|
MCSymbolRefExpr::VK_COFF_IMGREL32,
|
|
context), 4);
|
|
}
|
|
|
|
static std::optional<int64_t>
|
|
GetOptionalAbsDifference(const MCAssembler &Assembler, const MCSymbol *LHS,
|
|
const MCSymbol *RHS) {
|
|
MCContext &Context = Assembler.getContext();
|
|
const MCExpr *Diff =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(LHS, Context),
|
|
MCSymbolRefExpr::create(RHS, Context), Context);
|
|
// It should normally be possible to calculate the length of a function
|
|
// at this point, but it might not be possible in the presence of certain
|
|
// unusual constructs, like an inline asm with an alignment directive.
|
|
int64_t value;
|
|
if (!Diff->evaluateAsAbsolute(value, Assembler))
|
|
return std::nullopt;
|
|
return value;
|
|
}
|
|
|
|
static void EmitUnwindInfo(MCStreamer &streamer, WinEH::FrameInfo *info) {
|
|
// If this UNWIND_INFO already has a symbol, it's already been emitted.
|
|
if (info->Symbol)
|
|
return;
|
|
|
|
MCContext &context = streamer.getContext();
|
|
MCObjectStreamer *OS = (MCObjectStreamer *)(&streamer);
|
|
MCSymbol *Label = context.createTempSymbol();
|
|
|
|
streamer.emitValueToAlignment(Align(4));
|
|
streamer.emitLabel(Label);
|
|
info->Symbol = Label;
|
|
|
|
uint8_t numCodes = CountOfUnwindCodes(info->Instructions);
|
|
bool LastEpilogIsAtEnd = false;
|
|
bool AddPaddingEpilogCode = false;
|
|
uint8_t EpilogSize = 0;
|
|
bool EnableUnwindV2 = (info->Version >= 2) && !info->EpilogMap.empty();
|
|
if (EnableUnwindV2) {
|
|
auto &LastEpilog = info->EpilogMap.back().second;
|
|
|
|
// Calculate the size of the epilogs. Note that we +1 to the size so that
|
|
// the terminator instruction is also included in the epilog (the Windows
|
|
// unwinder does a simple range check versus the current instruction pointer
|
|
// so, although there are terminators that are large than 1 byte, the
|
|
// starting address of the terminator instruction will always be considered
|
|
// inside the epilog).
|
|
auto MaybeSize = GetOptionalAbsDifference(
|
|
OS->getAssembler(), LastEpilog.End, LastEpilog.UnwindV2Start);
|
|
if (!MaybeSize) {
|
|
context.reportError(LastEpilog.Loc,
|
|
"Failed to evaluate epilog size for Unwind v2");
|
|
return;
|
|
}
|
|
assert(*MaybeSize >= 0);
|
|
if (*MaybeSize >= (int64_t)UINT8_MAX) {
|
|
context.reportError(LastEpilog.Loc,
|
|
"Epilog size is too large for Unwind v2");
|
|
return;
|
|
}
|
|
EpilogSize = *MaybeSize + 1;
|
|
|
|
// If the last epilog is at the end of the function, we can use a special
|
|
// encoding for it. Because of our +1 trick for the size, this will only
|
|
// work where that final terminator instruction is 1 byte long.
|
|
auto LastEpilogToFuncEnd = GetOptionalAbsDifference(
|
|
OS->getAssembler(), info->FuncletOrFuncEnd, LastEpilog.UnwindV2Start);
|
|
LastEpilogIsAtEnd = (LastEpilogToFuncEnd == EpilogSize);
|
|
|
|
// If we have an odd number of epilog codes, we need to add a padding code.
|
|
size_t numEpilogCodes =
|
|
info->EpilogMap.size() + (LastEpilogIsAtEnd ? 0 : 1);
|
|
if ((numEpilogCodes % 2) != 0) {
|
|
AddPaddingEpilogCode = true;
|
|
numEpilogCodes++;
|
|
}
|
|
|
|
// Too many epilogs to handle.
|
|
if ((size_t)numCodes + numEpilogCodes > UINT8_MAX) {
|
|
context.reportError(info->FunctionLoc,
|
|
"Too many unwind codes with Unwind v2 enabled");
|
|
return;
|
|
}
|
|
|
|
numCodes += numEpilogCodes;
|
|
}
|
|
|
|
// Upper 3 bits are the version number.
|
|
uint8_t flags = info->Version;
|
|
if (info->ChainedParent)
|
|
flags |= Win64EH::UNW_ChainInfo << 3;
|
|
else {
|
|
if (info->HandlesUnwind)
|
|
flags |= Win64EH::UNW_TerminateHandler << 3;
|
|
if (info->HandlesExceptions)
|
|
flags |= Win64EH::UNW_ExceptionHandler << 3;
|
|
}
|
|
streamer.emitInt8(flags);
|
|
|
|
if (info->PrologEnd)
|
|
EmitAbsDifference(streamer, info->PrologEnd, info->Begin);
|
|
else
|
|
streamer.emitInt8(0);
|
|
|
|
streamer.emitInt8(numCodes);
|
|
|
|
uint8_t frame = 0;
|
|
if (info->LastFrameInst >= 0) {
|
|
WinEH::Instruction &frameInst = info->Instructions[info->LastFrameInst];
|
|
assert(frameInst.Operation == Win64EH::UOP_SetFPReg);
|
|
frame = (frameInst.Register & 0x0F) | (frameInst.Offset & 0xF0);
|
|
}
|
|
streamer.emitInt8(frame);
|
|
|
|
// Emit the epilog instructions.
|
|
if (EnableUnwindV2) {
|
|
MCDataFragment *DF = OS->getOrCreateDataFragment();
|
|
|
|
bool IsLast = true;
|
|
for (const auto &Epilog : llvm::reverse(info->EpilogMap)) {
|
|
if (IsLast) {
|
|
IsLast = false;
|
|
uint8_t Flags = LastEpilogIsAtEnd ? 0x01 : 0;
|
|
streamer.emitInt8(EpilogSize);
|
|
streamer.emitInt8((Flags << 4) | Win64EH::UOP_Epilog);
|
|
|
|
if (LastEpilogIsAtEnd)
|
|
continue;
|
|
}
|
|
|
|
// Each epilog is emitted as a fixup, since we can't measure the distance
|
|
// between the start of the epilog and the end of the function until
|
|
// layout has been completed.
|
|
auto *MCE = MCUnwindV2EpilogTargetExpr::create(*info, Epilog.second,
|
|
EpilogSize, context);
|
|
MCFixup Fixup = MCFixup::create(DF->getContents().size(), MCE, FK_Data_2);
|
|
DF->getFixups().push_back(Fixup);
|
|
DF->appendContents(2, 0);
|
|
}
|
|
}
|
|
if (AddPaddingEpilogCode)
|
|
streamer.emitInt16(Win64EH::UOP_Epilog << 8);
|
|
|
|
// Emit unwind instructions (in reverse order).
|
|
uint8_t numInst = info->Instructions.size();
|
|
for (uint8_t c = 0; c < numInst; ++c) {
|
|
WinEH::Instruction inst = info->Instructions.back();
|
|
info->Instructions.pop_back();
|
|
EmitUnwindCode(streamer, info->Begin, inst);
|
|
}
|
|
|
|
// For alignment purposes, the instruction array will always have an even
|
|
// number of entries, with the final entry potentially unused (in which case
|
|
// the array will be one longer than indicated by the count of unwind codes
|
|
// field).
|
|
if (numCodes & 1) {
|
|
streamer.emitInt16(0);
|
|
}
|
|
|
|
if (flags & (Win64EH::UNW_ChainInfo << 3))
|
|
EmitRuntimeFunction(streamer, info->ChainedParent);
|
|
else if (flags &
|
|
((Win64EH::UNW_TerminateHandler|Win64EH::UNW_ExceptionHandler) << 3))
|
|
streamer.emitValue(MCSymbolRefExpr::create(info->ExceptionHandler,
|
|
MCSymbolRefExpr::VK_COFF_IMGREL32,
|
|
context), 4);
|
|
else if (numCodes == 0) {
|
|
// The minimum size of an UNWIND_INFO struct is 8 bytes. If we're not
|
|
// a chained unwind info, if there is no handler, and if there are fewer
|
|
// than 2 slots used in the unwind code array, we have to pad to 8 bytes.
|
|
streamer.emitInt32(0);
|
|
}
|
|
}
|
|
|
|
bool MCUnwindV2EpilogTargetExpr::evaluateAsRelocatableImpl(
|
|
MCValue &Res, const MCAssembler *Asm) const {
|
|
// Calculate the offset to this epilog, and validate it's within the allowed
|
|
// range.
|
|
auto Offset = GetOptionalAbsDifference(*Asm, FunctionEnd, UnwindV2Start);
|
|
if (!Offset) {
|
|
Asm->getContext().reportError(
|
|
Loc, "Failed to evaluate epilog offset for Unwind v2");
|
|
return false;
|
|
}
|
|
assert(*Offset > 0);
|
|
constexpr uint16_t MaxEpilogOffset = 0x0fff;
|
|
if (*Offset > MaxEpilogOffset) {
|
|
Asm->getContext().reportError(Loc,
|
|
"Epilog offset is too large for Unwind v2");
|
|
return false;
|
|
}
|
|
|
|
// Sanity check that all epilogs are the same size.
|
|
auto Size = GetOptionalAbsDifference(*Asm, EpilogEnd, UnwindV2Start);
|
|
if (Size != (EpilogSize - 1)) {
|
|
Asm->getContext().reportError(
|
|
Loc,
|
|
"Size of this epilog does not match size of last epilog in function");
|
|
return false;
|
|
}
|
|
|
|
auto HighBits = *Offset >> 8;
|
|
Res = MCValue::get((HighBits << 12) | (Win64EH::UOP_Epilog << 8) |
|
|
(*Offset & 0xFF));
|
|
return true;
|
|
}
|
|
|
|
void llvm::Win64EH::UnwindEmitter::Emit(MCStreamer &Streamer) const {
|
|
// Emit the unwind info structs first.
|
|
for (const auto &CFI : Streamer.getWinFrameInfos()) {
|
|
MCSection *XData = Streamer.getAssociatedXDataSection(CFI->TextSection);
|
|
Streamer.switchSection(XData);
|
|
::EmitUnwindInfo(Streamer, CFI.get());
|
|
}
|
|
|
|
// Now emit RUNTIME_FUNCTION entries.
|
|
for (const auto &CFI : Streamer.getWinFrameInfos()) {
|
|
MCSection *PData = Streamer.getAssociatedPDataSection(CFI->TextSection);
|
|
Streamer.switchSection(PData);
|
|
EmitRuntimeFunction(Streamer, CFI.get());
|
|
}
|
|
}
|
|
|
|
void llvm::Win64EH::UnwindEmitter::EmitUnwindInfo(MCStreamer &Streamer,
|
|
WinEH::FrameInfo *info,
|
|
bool HandlerData) const {
|
|
// Switch sections (the static function above is meant to be called from
|
|
// here and from Emit().
|
|
MCSection *XData = Streamer.getAssociatedXDataSection(info->TextSection);
|
|
Streamer.switchSection(XData);
|
|
|
|
::EmitUnwindInfo(Streamer, info);
|
|
}
|
|
|
|
static const MCExpr *GetSubDivExpr(MCStreamer &Streamer, const MCSymbol *LHS,
|
|
const MCSymbol *RHS, int Div) {
|
|
MCContext &Context = Streamer.getContext();
|
|
const MCExpr *Expr =
|
|
MCBinaryExpr::createSub(MCSymbolRefExpr::create(LHS, Context),
|
|
MCSymbolRefExpr::create(RHS, Context), Context);
|
|
if (Div != 1)
|
|
Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(Div, Context),
|
|
Context);
|
|
return Expr;
|
|
}
|
|
|
|
static std::optional<int64_t> GetOptionalAbsDifference(MCStreamer &Streamer,
|
|
const MCSymbol *LHS,
|
|
const MCSymbol *RHS) {
|
|
MCObjectStreamer *OS = (MCObjectStreamer *)(&Streamer);
|
|
return GetOptionalAbsDifference(OS->getAssembler(), LHS, RHS);
|
|
}
|
|
|
|
static int64_t GetAbsDifference(MCStreamer &Streamer, const MCSymbol *LHS,
|
|
const MCSymbol *RHS) {
|
|
std::optional<int64_t> MaybeDiff =
|
|
GetOptionalAbsDifference(Streamer, LHS, RHS);
|
|
if (!MaybeDiff)
|
|
report_fatal_error("Failed to evaluate function length in SEH unwind info");
|
|
return *MaybeDiff;
|
|
}
|
|
|
|
static void checkARM64Instructions(MCStreamer &Streamer,
|
|
ArrayRef<WinEH::Instruction> Insns,
|
|
const MCSymbol *Begin, const MCSymbol *End,
|
|
StringRef Name, StringRef Type) {
|
|
if (!End)
|
|
return;
|
|
std::optional<int64_t> MaybeDistance =
|
|
GetOptionalAbsDifference(Streamer, End, Begin);
|
|
if (!MaybeDistance)
|
|
return;
|
|
uint32_t Distance = (uint32_t)*MaybeDistance;
|
|
|
|
for (const auto &I : Insns) {
|
|
switch (static_cast<Win64EH::UnwindOpcodes>(I.Operation)) {
|
|
default:
|
|
break;
|
|
case Win64EH::UOP_TrapFrame:
|
|
case Win64EH::UOP_PushMachFrame:
|
|
case Win64EH::UOP_Context:
|
|
case Win64EH::UOP_ECContext:
|
|
case Win64EH::UOP_ClearUnwoundToCall:
|
|
// Can't reason about these opcodes and how they map to actual
|
|
// instructions.
|
|
return;
|
|
}
|
|
}
|
|
// Exclude the end opcode which doesn't map to an instruction.
|
|
uint32_t InstructionBytes = 4 * (Insns.size() - 1);
|
|
if (Distance != InstructionBytes) {
|
|
Streamer.getContext().reportError(
|
|
SMLoc(), "Incorrect size for " + Name + " " + Type + ": " +
|
|
Twine(Distance) +
|
|
" bytes of instructions in range, but .seh directives "
|
|
"corresponding to " +
|
|
Twine(InstructionBytes) + " bytes\n");
|
|
}
|
|
}
|
|
|
|
static uint32_t ARM64CountOfUnwindCodes(ArrayRef<WinEH::Instruction> Insns) {
|
|
uint32_t Count = 0;
|
|
for (const auto &I : Insns) {
|
|
switch (static_cast<Win64EH::UnwindOpcodes>(I.Operation)) {
|
|
default:
|
|
llvm_unreachable("Unsupported ARM64 unwind code");
|
|
case Win64EH::UOP_AllocSmall:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_AllocMedium:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_AllocLarge:
|
|
Count += 4;
|
|
break;
|
|
case Win64EH::UOP_SaveR19R20X:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_SaveFPLRX:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_SaveFPLR:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_SaveReg:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveRegP:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveRegPX:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveRegX:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveLRPair:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveFReg:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegP:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegX:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegPX:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SetFP:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_AddFP:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_Nop:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_End:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_SaveNext:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_TrapFrame:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_PushMachFrame:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_Context:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_ECContext:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_ClearUnwoundToCall:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_PACSignLR:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_AllocZ:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveAnyRegI:
|
|
case Win64EH::UOP_SaveAnyRegIP:
|
|
case Win64EH::UOP_SaveAnyRegD:
|
|
case Win64EH::UOP_SaveAnyRegDP:
|
|
case Win64EH::UOP_SaveAnyRegQ:
|
|
case Win64EH::UOP_SaveAnyRegQP:
|
|
case Win64EH::UOP_SaveAnyRegIX:
|
|
case Win64EH::UOP_SaveAnyRegIPX:
|
|
case Win64EH::UOP_SaveAnyRegDX:
|
|
case Win64EH::UOP_SaveAnyRegDPX:
|
|
case Win64EH::UOP_SaveAnyRegQX:
|
|
case Win64EH::UOP_SaveAnyRegQPX:
|
|
case Win64EH::UOP_SaveZReg:
|
|
case Win64EH::UOP_SavePReg:
|
|
Count += 3;
|
|
break;
|
|
}
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
// Unwind opcode encodings and restrictions are documented at
|
|
// https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
|
|
static void ARM64EmitUnwindCode(MCStreamer &streamer,
|
|
const WinEH::Instruction &inst) {
|
|
uint8_t b, reg;
|
|
switch (static_cast<Win64EH::UnwindOpcodes>(inst.Operation)) {
|
|
default:
|
|
llvm_unreachable("Unsupported ARM64 unwind code");
|
|
case Win64EH::UOP_AllocSmall:
|
|
b = (inst.Offset >> 4) & 0x1F;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_AllocMedium: {
|
|
uint16_t hw = (inst.Offset >> 4) & 0x7FF;
|
|
b = 0xC0;
|
|
b |= (hw >> 8);
|
|
streamer.emitInt8(b);
|
|
b = hw & 0xFF;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
}
|
|
case Win64EH::UOP_AllocLarge: {
|
|
uint32_t w;
|
|
b = 0xE0;
|
|
streamer.emitInt8(b);
|
|
w = inst.Offset >> 4;
|
|
b = (w & 0x00FF0000) >> 16;
|
|
streamer.emitInt8(b);
|
|
b = (w & 0x0000FF00) >> 8;
|
|
streamer.emitInt8(b);
|
|
b = w & 0x000000FF;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
}
|
|
case Win64EH::UOP_SetFP:
|
|
b = 0xE1;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_AddFP:
|
|
b = 0xE2;
|
|
streamer.emitInt8(b);
|
|
b = (inst.Offset >> 3);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_Nop:
|
|
b = 0xE3;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveR19R20X:
|
|
b = 0x20;
|
|
b |= (inst.Offset >> 3) & 0x1F;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveFPLRX:
|
|
b = 0x80;
|
|
b |= ((inst.Offset - 1) >> 3) & 0x3F;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveFPLR:
|
|
b = 0x40;
|
|
b |= (inst.Offset >> 3) & 0x3F;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveReg:
|
|
assert(inst.Register >= 19 && "Saved reg must be >= 19");
|
|
reg = inst.Register - 19;
|
|
b = 0xD0 | ((reg & 0xC) >> 2);
|
|
streamer.emitInt8(b);
|
|
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveRegX:
|
|
assert(inst.Register >= 19 && "Saved reg must be >= 19");
|
|
reg = inst.Register - 19;
|
|
b = 0xD4 | ((reg & 0x8) >> 3);
|
|
streamer.emitInt8(b);
|
|
b = ((reg & 0x7) << 5) | ((inst.Offset >> 3) - 1);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveRegP:
|
|
assert(inst.Register >= 19 && "Saved registers must be >= 19");
|
|
reg = inst.Register - 19;
|
|
b = 0xC8 | ((reg & 0xC) >> 2);
|
|
streamer.emitInt8(b);
|
|
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveRegPX:
|
|
assert(inst.Register >= 19 && "Saved registers must be >= 19");
|
|
reg = inst.Register - 19;
|
|
b = 0xCC | ((reg & 0xC) >> 2);
|
|
streamer.emitInt8(b);
|
|
b = ((reg & 0x3) << 6) | ((inst.Offset >> 3) - 1);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveLRPair:
|
|
assert(inst.Register >= 19 && "Saved reg must be >= 19");
|
|
reg = inst.Register - 19;
|
|
assert((reg % 2) == 0 && "Saved reg must be 19+2*X");
|
|
reg /= 2;
|
|
b = 0xD6 | ((reg & 0x7) >> 2);
|
|
streamer.emitInt8(b);
|
|
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveFReg:
|
|
assert(inst.Register >= 8 && "Saved dreg must be >= 8");
|
|
reg = inst.Register - 8;
|
|
b = 0xDC | ((reg & 0x4) >> 2);
|
|
streamer.emitInt8(b);
|
|
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveFRegX:
|
|
assert(inst.Register >= 8 && "Saved dreg must be >= 8");
|
|
reg = inst.Register - 8;
|
|
b = 0xDE;
|
|
streamer.emitInt8(b);
|
|
b = ((reg & 0x7) << 5) | ((inst.Offset >> 3) - 1);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveFRegP:
|
|
assert(inst.Register >= 8 && "Saved dregs must be >= 8");
|
|
reg = inst.Register - 8;
|
|
b = 0xD8 | ((reg & 0x4) >> 2);
|
|
streamer.emitInt8(b);
|
|
b = ((reg & 0x3) << 6) | (inst.Offset >> 3);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveFRegPX:
|
|
assert(inst.Register >= 8 && "Saved dregs must be >= 8");
|
|
reg = inst.Register - 8;
|
|
b = 0xDA | ((reg & 0x4) >> 2);
|
|
streamer.emitInt8(b);
|
|
b = ((reg & 0x3) << 6) | ((inst.Offset >> 3) - 1);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_End:
|
|
b = 0xE4;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveNext:
|
|
b = 0xE6;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_TrapFrame:
|
|
b = 0xE8;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_PushMachFrame:
|
|
b = 0xE9;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_Context:
|
|
b = 0xEA;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_ECContext:
|
|
b = 0xEB;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_ClearUnwoundToCall:
|
|
b = 0xEC;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_PACSignLR:
|
|
b = 0xFC;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
case Win64EH::UOP_SaveAnyRegI:
|
|
case Win64EH::UOP_SaveAnyRegIP:
|
|
case Win64EH::UOP_SaveAnyRegD:
|
|
case Win64EH::UOP_SaveAnyRegDP:
|
|
case Win64EH::UOP_SaveAnyRegQ:
|
|
case Win64EH::UOP_SaveAnyRegQP:
|
|
case Win64EH::UOP_SaveAnyRegIX:
|
|
case Win64EH::UOP_SaveAnyRegIPX:
|
|
case Win64EH::UOP_SaveAnyRegDX:
|
|
case Win64EH::UOP_SaveAnyRegDPX:
|
|
case Win64EH::UOP_SaveAnyRegQX:
|
|
case Win64EH::UOP_SaveAnyRegQPX: {
|
|
// This assumes the opcodes are listed in the enum in a particular order.
|
|
int Op = inst.Operation - Win64EH::UOP_SaveAnyRegI;
|
|
int Writeback = Op / 6;
|
|
int Paired = Op % 2;
|
|
int Mode = (Op / 2) % 3;
|
|
int Offset = inst.Offset >> 3;
|
|
if (Writeback || Paired || Mode == 2)
|
|
Offset >>= 1;
|
|
if (Writeback)
|
|
--Offset;
|
|
b = 0xE7;
|
|
streamer.emitInt8(b);
|
|
assert(inst.Register < 32);
|
|
b = inst.Register | (Writeback << 5) | (Paired << 6);
|
|
streamer.emitInt8(b);
|
|
b = Offset | (Mode << 6);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
}
|
|
case Win64EH::UOP_AllocZ: {
|
|
b = 0xDF;
|
|
streamer.emitInt8(b);
|
|
b = inst.Offset;
|
|
streamer.emitInt8(b);
|
|
break;
|
|
}
|
|
case Win64EH::UOP_SaveZReg: {
|
|
assert(inst.Register >= 8 && inst.Register <= 23);
|
|
assert(inst.Offset < 256);
|
|
b = 0xE7;
|
|
streamer.emitInt8(b);
|
|
reg = inst.Register - 8;
|
|
b = ((inst.Offset & 0xC0) >> 1) | reg;
|
|
streamer.emitInt8(b);
|
|
b = 0xC0 | (inst.Offset & 0x3F);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
}
|
|
case Win64EH::UOP_SavePReg: {
|
|
assert(inst.Register >= 4 && inst.Register <= 15);
|
|
assert(inst.Offset < 256);
|
|
b = 0xE7;
|
|
streamer.emitInt8(b);
|
|
reg = inst.Register;
|
|
b = ((inst.Offset & 0xC0) >> 1) | 0x10 | reg;
|
|
streamer.emitInt8(b);
|
|
b = 0xC0 | (inst.Offset & 0x3F);
|
|
streamer.emitInt8(b);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the epilog symbol of an epilog with the exact same unwind code
|
|
// sequence, if it exists. Otherwise, returns nullptr.
|
|
// EpilogInstrs - Unwind codes for the current epilog.
|
|
// Epilogs - Epilogs that potentialy match the current epilog.
|
|
static MCSymbol*
|
|
FindMatchingEpilog(const std::vector<WinEH::Instruction>& EpilogInstrs,
|
|
const std::vector<MCSymbol *>& Epilogs,
|
|
const WinEH::FrameInfo *info) {
|
|
for (auto *EpilogStart : Epilogs) {
|
|
auto InstrsIter = info->EpilogMap.find(EpilogStart);
|
|
assert(InstrsIter != info->EpilogMap.end() &&
|
|
"Epilog not found in EpilogMap");
|
|
const auto &Instrs = InstrsIter->second.Instructions;
|
|
|
|
if (Instrs.size() != EpilogInstrs.size())
|
|
continue;
|
|
|
|
bool Match = true;
|
|
for (unsigned i = 0; i < Instrs.size(); ++i)
|
|
if (Instrs[i] != EpilogInstrs[i]) {
|
|
Match = false;
|
|
break;
|
|
}
|
|
|
|
if (Match)
|
|
return EpilogStart;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static void simplifyARM64Opcodes(std::vector<WinEH::Instruction> &Instructions,
|
|
bool Reverse) {
|
|
unsigned PrevOffset = -1;
|
|
unsigned PrevRegister = -1;
|
|
|
|
auto VisitInstruction = [&](WinEH::Instruction &Inst) {
|
|
// Convert 2-byte opcodes into equivalent 1-byte ones.
|
|
if (Inst.Operation == Win64EH::UOP_SaveRegP && Inst.Register == 29) {
|
|
Inst.Operation = Win64EH::UOP_SaveFPLR;
|
|
Inst.Register = -1;
|
|
} else if (Inst.Operation == Win64EH::UOP_SaveRegPX &&
|
|
Inst.Register == 29) {
|
|
Inst.Operation = Win64EH::UOP_SaveFPLRX;
|
|
Inst.Register = -1;
|
|
} else if (Inst.Operation == Win64EH::UOP_SaveRegPX &&
|
|
Inst.Register == 19 && Inst.Offset <= 248) {
|
|
Inst.Operation = Win64EH::UOP_SaveR19R20X;
|
|
Inst.Register = -1;
|
|
} else if (Inst.Operation == Win64EH::UOP_AddFP && Inst.Offset == 0) {
|
|
Inst.Operation = Win64EH::UOP_SetFP;
|
|
} else if (Inst.Operation == Win64EH::UOP_SaveRegP &&
|
|
Inst.Register == PrevRegister + 2 &&
|
|
Inst.Offset == PrevOffset + 16) {
|
|
Inst.Operation = Win64EH::UOP_SaveNext;
|
|
Inst.Register = -1;
|
|
Inst.Offset = 0;
|
|
// Intentionally not creating UOP_SaveNext for float register pairs,
|
|
// as current versions of Windows (up to at least 20.04) is buggy
|
|
// regarding SaveNext for float pairs.
|
|
}
|
|
// Update info about the previous instruction, for detecting if
|
|
// the next one can be made a UOP_SaveNext
|
|
if (Inst.Operation == Win64EH::UOP_SaveR19R20X) {
|
|
PrevOffset = 0;
|
|
PrevRegister = 19;
|
|
} else if (Inst.Operation == Win64EH::UOP_SaveRegPX) {
|
|
PrevOffset = 0;
|
|
PrevRegister = Inst.Register;
|
|
} else if (Inst.Operation == Win64EH::UOP_SaveRegP) {
|
|
PrevOffset = Inst.Offset;
|
|
PrevRegister = Inst.Register;
|
|
} else if (Inst.Operation == Win64EH::UOP_SaveNext) {
|
|
PrevRegister += 2;
|
|
PrevOffset += 16;
|
|
} else {
|
|
PrevRegister = -1;
|
|
PrevOffset = -1;
|
|
}
|
|
};
|
|
|
|
// Iterate over instructions in a forward order (for prologues),
|
|
// backwards for epilogues (i.e. always reverse compared to how the
|
|
// opcodes are stored).
|
|
if (Reverse) {
|
|
for (auto It = Instructions.rbegin(); It != Instructions.rend(); It++)
|
|
VisitInstruction(*It);
|
|
} else {
|
|
for (WinEH::Instruction &Inst : Instructions)
|
|
VisitInstruction(Inst);
|
|
}
|
|
}
|
|
|
|
// Check if an epilog exists as a subset of the end of a prolog (backwards).
|
|
static int
|
|
getARM64OffsetInProlog(const std::vector<WinEH::Instruction> &Prolog,
|
|
const std::vector<WinEH::Instruction> &Epilog) {
|
|
// Can't find an epilog as a subset if it is longer than the prolog.
|
|
if (Epilog.size() > Prolog.size())
|
|
return -1;
|
|
|
|
// Check that the epilog actually is a perfect match for the end (backwrds)
|
|
// of the prolog.
|
|
for (int I = Epilog.size() - 1; I >= 0; I--) {
|
|
if (Prolog[I] != Epilog[Epilog.size() - 1 - I])
|
|
return -1;
|
|
}
|
|
|
|
if (Epilog.size() == Prolog.size())
|
|
return 0;
|
|
|
|
// If the epilog was a subset of the prolog, find its offset.
|
|
return ARM64CountOfUnwindCodes(ArrayRef<WinEH::Instruction>(
|
|
&Prolog[Epilog.size()], Prolog.size() - Epilog.size()));
|
|
}
|
|
|
|
static int checkARM64PackedEpilog(MCStreamer &streamer, WinEH::FrameInfo *info,
|
|
WinEH::FrameInfo::Segment *Seg,
|
|
int PrologCodeBytes) {
|
|
// Can only pack if there's one single epilog
|
|
if (Seg->Epilogs.size() != 1)
|
|
return -1;
|
|
|
|
MCSymbol *Sym = Seg->Epilogs.begin()->first;
|
|
const std::vector<WinEH::Instruction> &Epilog =
|
|
info->EpilogMap[Sym].Instructions;
|
|
|
|
// Check that the epilog actually is at the very end of the function,
|
|
// otherwise it can't be packed.
|
|
uint32_t DistanceFromEnd =
|
|
(uint32_t)(Seg->Offset + Seg->Length - Seg->Epilogs.begin()->second);
|
|
if (DistanceFromEnd / 4 != Epilog.size())
|
|
return -1;
|
|
|
|
int RetVal = -1;
|
|
// Even if we don't end up sharing opcodes with the prolog, we can still
|
|
// write the offset as a packed offset, if the single epilog is located at
|
|
// the end of the function and the offset (pointing after the prolog) fits
|
|
// as a packed offset.
|
|
if (PrologCodeBytes <= 31 &&
|
|
PrologCodeBytes + ARM64CountOfUnwindCodes(Epilog) <= 124)
|
|
RetVal = PrologCodeBytes;
|
|
|
|
int Offset = getARM64OffsetInProlog(info->Instructions, Epilog);
|
|
if (Offset < 0)
|
|
return RetVal;
|
|
|
|
// Check that the offset and prolog size fits in the first word; it's
|
|
// unclear whether the epilog count in the extension word can be taken
|
|
// as packed epilog offset.
|
|
if (Offset > 31 || PrologCodeBytes > 124)
|
|
return RetVal;
|
|
|
|
// As we choose to express the epilog as part of the prolog, remove the
|
|
// epilog from the map, so we don't try to emit its opcodes.
|
|
info->EpilogMap.erase(Sym);
|
|
return Offset;
|
|
}
|
|
|
|
static bool tryARM64PackedUnwind(WinEH::FrameInfo *info, uint32_t FuncLength,
|
|
int PackedEpilogOffset) {
|
|
if (PackedEpilogOffset == 0) {
|
|
// Fully symmetric prolog and epilog, should be ok for packed format.
|
|
// For CR=3, the corresponding synthesized epilog actually lacks the
|
|
// SetFP opcode, but unwinding should work just fine despite that
|
|
// (if at the SetFP opcode, the unwinder considers it as part of the
|
|
// function body and just unwinds the full prolog instead).
|
|
} else if (PackedEpilogOffset == 1) {
|
|
// One single case of differences between prolog and epilog is allowed:
|
|
// The epilog can lack a single SetFP that is the last opcode in the
|
|
// prolog, for the CR=3 case.
|
|
if (info->Instructions.back().Operation != Win64EH::UOP_SetFP)
|
|
return false;
|
|
} else {
|
|
// Too much difference between prolog and epilog.
|
|
return false;
|
|
}
|
|
unsigned RegI = 0, RegF = 0;
|
|
int Predecrement = 0;
|
|
enum {
|
|
Start,
|
|
Start2,
|
|
Start3,
|
|
IntRegs,
|
|
FloatRegs,
|
|
InputArgs,
|
|
StackAdjust,
|
|
FrameRecord,
|
|
End
|
|
} Location = Start;
|
|
bool StandaloneLR = false, FPLRPair = false;
|
|
bool PAC = false;
|
|
int StackOffset = 0;
|
|
int Nops = 0;
|
|
// Iterate over the prolog and check that all opcodes exactly match
|
|
// the canonical order and form. A more lax check could verify that
|
|
// all saved registers are in the expected locations, but not enforce
|
|
// the order - that would work fine when unwinding from within
|
|
// functions, but not be exactly right if unwinding happens within
|
|
// prologs/epilogs.
|
|
for (const WinEH::Instruction &Inst : info->Instructions) {
|
|
switch (Inst.Operation) {
|
|
case Win64EH::UOP_End:
|
|
if (Location != Start)
|
|
return false;
|
|
Location = Start2;
|
|
break;
|
|
case Win64EH::UOP_PACSignLR:
|
|
if (Location != Start2)
|
|
return false;
|
|
PAC = true;
|
|
Location = Start3;
|
|
break;
|
|
case Win64EH::UOP_SaveR19R20X:
|
|
if (Location != Start2 && Location != Start3)
|
|
return false;
|
|
Predecrement = Inst.Offset;
|
|
RegI = 2;
|
|
Location = IntRegs;
|
|
break;
|
|
case Win64EH::UOP_SaveRegX:
|
|
if (Location != Start2 && Location != Start3)
|
|
return false;
|
|
Predecrement = Inst.Offset;
|
|
if (Inst.Register == 19)
|
|
RegI += 1;
|
|
else if (Inst.Register == 30)
|
|
StandaloneLR = true;
|
|
else
|
|
return false;
|
|
// Odd register; can't be any further int registers.
|
|
Location = FloatRegs;
|
|
break;
|
|
case Win64EH::UOP_SaveRegPX:
|
|
// Can't have this in a canonical prologue. Either this has been
|
|
// canonicalized into SaveR19R20X or SaveFPLRX, or it's an unsupported
|
|
// register pair.
|
|
// It can't be canonicalized into SaveR19R20X if the offset is
|
|
// larger than 248 bytes, but even with the maximum case with
|
|
// RegI=10/RegF=8/CR=1/H=1, we end up with SavSZ = 216, which should
|
|
// fit into SaveR19R20X.
|
|
// The unwinding opcodes can't describe the otherwise seemingly valid
|
|
// case for RegI=1 CR=1, that would start with a
|
|
// "stp x19, lr, [sp, #-...]!" as that fits neither SaveRegPX nor
|
|
// SaveLRPair.
|
|
return false;
|
|
case Win64EH::UOP_SaveRegP:
|
|
if (Location != IntRegs || Inst.Offset != 8 * RegI ||
|
|
Inst.Register != 19 + RegI)
|
|
return false;
|
|
RegI += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveReg:
|
|
if (Location != IntRegs || Inst.Offset != 8 * RegI)
|
|
return false;
|
|
if (Inst.Register == 19 + RegI)
|
|
RegI += 1;
|
|
else if (Inst.Register == 30)
|
|
StandaloneLR = true;
|
|
else
|
|
return false;
|
|
// Odd register; can't be any further int registers.
|
|
Location = FloatRegs;
|
|
break;
|
|
case Win64EH::UOP_SaveLRPair:
|
|
if (Location != IntRegs || Inst.Offset != 8 * RegI ||
|
|
Inst.Register != 19 + RegI)
|
|
return false;
|
|
RegI += 1;
|
|
StandaloneLR = true;
|
|
Location = FloatRegs;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegX:
|
|
// Packed unwind can't handle prologs that only save one single
|
|
// float register.
|
|
return false;
|
|
case Win64EH::UOP_SaveFReg:
|
|
if (Location != FloatRegs || RegF == 0 || Inst.Register != 8 + RegF ||
|
|
Inst.Offset != 8 * (RegI + (StandaloneLR ? 1 : 0) + RegF))
|
|
return false;
|
|
RegF += 1;
|
|
Location = InputArgs;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegPX:
|
|
if ((Location != Start2 && Location != Start3) || Inst.Register != 8)
|
|
return false;
|
|
Predecrement = Inst.Offset;
|
|
RegF = 2;
|
|
Location = FloatRegs;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegP:
|
|
if ((Location != IntRegs && Location != FloatRegs) ||
|
|
Inst.Register != 8 + RegF ||
|
|
Inst.Offset != 8 * (RegI + (StandaloneLR ? 1 : 0) + RegF))
|
|
return false;
|
|
RegF += 2;
|
|
Location = FloatRegs;
|
|
break;
|
|
case Win64EH::UOP_SaveNext:
|
|
if (Location == IntRegs)
|
|
RegI += 2;
|
|
else if (Location == FloatRegs)
|
|
RegF += 2;
|
|
else
|
|
return false;
|
|
break;
|
|
case Win64EH::UOP_Nop:
|
|
if (Location != IntRegs && Location != FloatRegs && Location != InputArgs)
|
|
return false;
|
|
Location = InputArgs;
|
|
Nops++;
|
|
break;
|
|
case Win64EH::UOP_AllocSmall:
|
|
case Win64EH::UOP_AllocMedium:
|
|
if (Location != Start2 && Location != Start3 && Location != IntRegs &&
|
|
Location != FloatRegs && Location != InputArgs &&
|
|
Location != StackAdjust)
|
|
return false;
|
|
// Can have either a single decrement, or a pair of decrements with
|
|
// 4080 and another decrement.
|
|
if (StackOffset == 0)
|
|
StackOffset = Inst.Offset;
|
|
else if (StackOffset != 4080)
|
|
return false;
|
|
else
|
|
StackOffset += Inst.Offset;
|
|
Location = StackAdjust;
|
|
break;
|
|
case Win64EH::UOP_SaveFPLRX:
|
|
// Not allowing FPLRX after StackAdjust; if a StackAdjust is used, it
|
|
// should be followed by a FPLR instead.
|
|
if (Location != Start2 && Location != Start3 && Location != IntRegs &&
|
|
Location != FloatRegs && Location != InputArgs)
|
|
return false;
|
|
StackOffset = Inst.Offset;
|
|
Location = FrameRecord;
|
|
FPLRPair = true;
|
|
break;
|
|
case Win64EH::UOP_SaveFPLR:
|
|
// This can only follow after a StackAdjust
|
|
if (Location != StackAdjust || Inst.Offset != 0)
|
|
return false;
|
|
Location = FrameRecord;
|
|
FPLRPair = true;
|
|
break;
|
|
case Win64EH::UOP_SetFP:
|
|
if (Location != FrameRecord)
|
|
return false;
|
|
Location = End;
|
|
break;
|
|
case Win64EH::UOP_SaveAnyRegI:
|
|
case Win64EH::UOP_SaveAnyRegIP:
|
|
case Win64EH::UOP_SaveAnyRegD:
|
|
case Win64EH::UOP_SaveAnyRegDP:
|
|
case Win64EH::UOP_SaveAnyRegQ:
|
|
case Win64EH::UOP_SaveAnyRegQP:
|
|
case Win64EH::UOP_SaveAnyRegIX:
|
|
case Win64EH::UOP_SaveAnyRegIPX:
|
|
case Win64EH::UOP_SaveAnyRegDX:
|
|
case Win64EH::UOP_SaveAnyRegDPX:
|
|
case Win64EH::UOP_SaveAnyRegQX:
|
|
case Win64EH::UOP_SaveAnyRegQPX:
|
|
// These are never canonical; they don't show up with the usual Arm64
|
|
// calling convention.
|
|
return false;
|
|
case Win64EH::UOP_AllocLarge:
|
|
// Allocations this large can't be represented in packed unwind (and
|
|
// usually don't fit the canonical form anyway because we need to use
|
|
// __chkstk to allocate the stack space).
|
|
return false;
|
|
case Win64EH::UOP_AddFP:
|
|
// "add x29, sp, #N" doesn't show up in the canonical pattern (except for
|
|
// N=0, which is UOP_SetFP).
|
|
return false;
|
|
case Win64EH::UOP_AllocZ:
|
|
case Win64EH::UOP_SaveZReg:
|
|
case Win64EH::UOP_SavePReg:
|
|
// Canonical prologues don't support spilling SVE registers.
|
|
return false;
|
|
case Win64EH::UOP_TrapFrame:
|
|
case Win64EH::UOP_Context:
|
|
case Win64EH::UOP_ECContext:
|
|
case Win64EH::UOP_ClearUnwoundToCall:
|
|
case Win64EH::UOP_PushMachFrame:
|
|
// These are special opcodes that aren't normally generated.
|
|
return false;
|
|
default:
|
|
report_fatal_error("Unknown Arm64 unwind opcode");
|
|
}
|
|
}
|
|
if (RegI > 10 || RegF > 8)
|
|
return false;
|
|
if (StandaloneLR && FPLRPair)
|
|
return false;
|
|
if (FPLRPair && Location != End)
|
|
return false;
|
|
if (Nops != 0 && Nops != 4)
|
|
return false;
|
|
if (PAC && !FPLRPair)
|
|
return false;
|
|
int H = Nops == 4;
|
|
// There's an inconsistency regarding packed unwind info with homed
|
|
// parameters; according to the documentation, the epilog shouldn't have
|
|
// the same corresponding nops (and thus, to set the H bit, we should
|
|
// require an epilog which isn't exactly symmetrical - we shouldn't accept
|
|
// an exact mirrored epilog for those cases), but in practice,
|
|
// RtlVirtualUnwind behaves as if it does expect the epilogue to contain
|
|
// the same nops. See https://github.com/llvm/llvm-project/issues/54879.
|
|
// To play it safe, don't produce packed unwind info with homed parameters.
|
|
if (H)
|
|
return false;
|
|
int IntSZ = 8 * RegI;
|
|
if (StandaloneLR)
|
|
IntSZ += 8;
|
|
int FpSZ = 8 * RegF; // RegF not yet decremented
|
|
int SavSZ = (IntSZ + FpSZ + 8 * 8 * H + 0xF) & ~0xF;
|
|
if (Predecrement != SavSZ)
|
|
return false;
|
|
if (FPLRPair && StackOffset < 16)
|
|
return false;
|
|
if (StackOffset % 16)
|
|
return false;
|
|
uint32_t FrameSize = (StackOffset + SavSZ) / 16;
|
|
if (FrameSize > 0x1FF)
|
|
return false;
|
|
assert(RegF != 1 && "One single float reg not allowed");
|
|
if (RegF > 0)
|
|
RegF--; // Convert from actual number of registers, to value stored
|
|
assert(FuncLength <= 0x7FF && "FuncLength should have been checked earlier");
|
|
int Flag = 0x01; // Function segments not supported yet
|
|
int CR = PAC ? 2 : FPLRPair ? 3 : StandaloneLR ? 1 : 0;
|
|
info->PackedInfo |= Flag << 0;
|
|
info->PackedInfo |= (FuncLength & 0x7FF) << 2;
|
|
info->PackedInfo |= (RegF & 0x7) << 13;
|
|
info->PackedInfo |= (RegI & 0xF) << 16;
|
|
info->PackedInfo |= (H & 0x1) << 20;
|
|
info->PackedInfo |= (CR & 0x3) << 21;
|
|
info->PackedInfo |= (FrameSize & 0x1FF) << 23;
|
|
return true;
|
|
}
|
|
|
|
static void ARM64ProcessEpilogs(WinEH::FrameInfo *info,
|
|
WinEH::FrameInfo::Segment *Seg,
|
|
uint32_t &TotalCodeBytes,
|
|
MapVector<MCSymbol *, uint32_t> &EpilogInfo) {
|
|
|
|
std::vector<MCSymbol *> EpilogStarts;
|
|
for (auto &I : Seg->Epilogs)
|
|
EpilogStarts.push_back(I.first);
|
|
|
|
// Epilogs processed so far.
|
|
std::vector<MCSymbol *> AddedEpilogs;
|
|
for (auto *S : EpilogStarts) {
|
|
MCSymbol *EpilogStart = S;
|
|
auto &EpilogInstrs = info->EpilogMap[S].Instructions;
|
|
uint32_t CodeBytes = ARM64CountOfUnwindCodes(EpilogInstrs);
|
|
|
|
MCSymbol* MatchingEpilog =
|
|
FindMatchingEpilog(EpilogInstrs, AddedEpilogs, info);
|
|
int PrologOffset;
|
|
if (MatchingEpilog) {
|
|
assert(EpilogInfo.contains(MatchingEpilog) &&
|
|
"Duplicate epilog not found");
|
|
EpilogInfo[EpilogStart] = EpilogInfo.lookup(MatchingEpilog);
|
|
// Clear the unwind codes in the EpilogMap, so that they don't get output
|
|
// in ARM64EmitUnwindInfoForSegment().
|
|
EpilogInstrs.clear();
|
|
} else if ((PrologOffset = getARM64OffsetInProlog(info->Instructions,
|
|
EpilogInstrs)) >= 0) {
|
|
EpilogInfo[EpilogStart] = PrologOffset;
|
|
// If the segment doesn't have a prolog, an end_c will be emitted before
|
|
// prolog opcodes. So epilog start index in opcodes array is moved by 1.
|
|
if (!Seg->HasProlog)
|
|
EpilogInfo[EpilogStart] += 1;
|
|
// Clear the unwind codes in the EpilogMap, so that they don't get output
|
|
// in ARM64EmitUnwindInfoForSegment().
|
|
EpilogInstrs.clear();
|
|
} else {
|
|
EpilogInfo[EpilogStart] = TotalCodeBytes;
|
|
TotalCodeBytes += CodeBytes;
|
|
AddedEpilogs.push_back(EpilogStart);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ARM64FindSegmentsInFunction(MCStreamer &streamer,
|
|
WinEH::FrameInfo *info,
|
|
int64_t RawFuncLength) {
|
|
if (info->PrologEnd)
|
|
checkARM64Instructions(streamer, info->Instructions, info->Begin,
|
|
info->PrologEnd, info->Function->getName(),
|
|
"prologue");
|
|
struct EpilogStartEnd {
|
|
MCSymbol *Start;
|
|
int64_t Offset;
|
|
int64_t End;
|
|
};
|
|
// Record Start and End of each epilog.
|
|
SmallVector<struct EpilogStartEnd, 4> Epilogs;
|
|
for (auto &I : info->EpilogMap) {
|
|
MCSymbol *Start = I.first;
|
|
auto &Instrs = I.second.Instructions;
|
|
int64_t Offset = GetAbsDifference(streamer, Start, info->Begin);
|
|
checkARM64Instructions(streamer, Instrs, Start, I.second.End,
|
|
info->Function->getName(), "epilogue");
|
|
assert((Epilogs.size() == 0 || Offset >= Epilogs.back().End) &&
|
|
"Epilogs should be monotonically ordered");
|
|
// Exclue the end opcode from Instrs.size() when calculating the end of the
|
|
// epilog.
|
|
Epilogs.push_back({Start, Offset, Offset + (int64_t)(Instrs.size() - 1) * 4});
|
|
}
|
|
|
|
unsigned E = 0;
|
|
int64_t SegLimit = 0xFFFFC;
|
|
int64_t SegOffset = 0;
|
|
|
|
if (RawFuncLength > SegLimit) {
|
|
|
|
int64_t RemainingLength = RawFuncLength;
|
|
|
|
while (RemainingLength > SegLimit) {
|
|
// Try divide the function into segments, requirements:
|
|
// 1. Segment length <= 0xFFFFC;
|
|
// 2. Each Prologue or Epilogue must be fully within a segment.
|
|
int64_t SegLength = SegLimit;
|
|
int64_t SegEnd = SegOffset + SegLength;
|
|
// Keep record on symbols and offsets of epilogs in this segment.
|
|
MapVector<MCSymbol *, int64_t> EpilogsInSegment;
|
|
|
|
while (E < Epilogs.size() && Epilogs[E].End < SegEnd) {
|
|
// Epilogs within current segment.
|
|
EpilogsInSegment[Epilogs[E].Start] = Epilogs[E].Offset;
|
|
++E;
|
|
}
|
|
|
|
// At this point, we have:
|
|
// 1. Put all epilogs in segments already. No action needed here; or
|
|
// 2. Found an epilog that will cross segments boundry. We need to
|
|
// move back current segment's end boundry, so the epilog is entirely
|
|
// in the next segment; or
|
|
// 3. Left at least one epilog that is entirely after this segment.
|
|
// It'll be handled by the next iteration, or the last segment.
|
|
if (E < Epilogs.size() && Epilogs[E].Offset <= SegEnd)
|
|
// Move back current Segment's end boundry.
|
|
SegLength = Epilogs[E].Offset - SegOffset;
|
|
|
|
auto Seg = WinEH::FrameInfo::Segment(
|
|
SegOffset, SegLength, /* HasProlog */!SegOffset);
|
|
Seg.Epilogs = std::move(EpilogsInSegment);
|
|
info->Segments.push_back(Seg);
|
|
|
|
SegOffset += SegLength;
|
|
RemainingLength -= SegLength;
|
|
}
|
|
}
|
|
|
|
// Add the last segment when RawFuncLength > 0xFFFFC,
|
|
// or the only segment otherwise.
|
|
auto LastSeg =
|
|
WinEH::FrameInfo::Segment(SegOffset, RawFuncLength - SegOffset,
|
|
/* HasProlog */!SegOffset);
|
|
for (; E < Epilogs.size(); ++E)
|
|
LastSeg.Epilogs[Epilogs[E].Start] = Epilogs[E].Offset;
|
|
info->Segments.push_back(LastSeg);
|
|
}
|
|
|
|
static void ARM64EmitUnwindInfoForSegment(MCStreamer &streamer,
|
|
WinEH::FrameInfo *info,
|
|
WinEH::FrameInfo::Segment &Seg,
|
|
bool TryPacked = true) {
|
|
MCContext &context = streamer.getContext();
|
|
MCSymbol *Label = context.createTempSymbol();
|
|
|
|
streamer.emitValueToAlignment(Align(4));
|
|
streamer.emitLabel(Label);
|
|
Seg.Symbol = Label;
|
|
// Use the 1st segemnt's label as function's.
|
|
if (Seg.Offset == 0)
|
|
info->Symbol = Label;
|
|
|
|
bool HasProlog = Seg.HasProlog;
|
|
bool HasEpilogs = (Seg.Epilogs.size() != 0);
|
|
|
|
uint32_t SegLength = (uint32_t)Seg.Length / 4;
|
|
uint32_t PrologCodeBytes = info->PrologCodeBytes;
|
|
|
|
int PackedEpilogOffset = HasEpilogs ?
|
|
checkARM64PackedEpilog(streamer, info, &Seg, PrologCodeBytes) : -1;
|
|
|
|
// TODO:
|
|
// 1. Enable packed unwind info (.pdata only) for multi-segment functions.
|
|
// 2. Emit packed unwind info (.pdata only) for segments that have neithor
|
|
// prolog nor epilog.
|
|
if (info->Segments.size() == 1 && PackedEpilogOffset >= 0 &&
|
|
uint32_t(PackedEpilogOffset) < PrologCodeBytes &&
|
|
!info->HandlesExceptions && SegLength <= 0x7ff && TryPacked) {
|
|
// Matching prolog/epilog and no exception handlers; check if the
|
|
// prolog matches the patterns that can be described by the packed
|
|
// format.
|
|
|
|
// info->Symbol was already set even if we didn't actually write any
|
|
// unwind info there. Keep using that as indicator that this unwind
|
|
// info has been generated already.
|
|
if (tryARM64PackedUnwind(info, SegLength, PackedEpilogOffset))
|
|
return;
|
|
}
|
|
|
|
// If the prolog is not in this segment, we need to emit an end_c, which takes
|
|
// 1 byte, before prolog unwind ops.
|
|
if (!HasProlog) {
|
|
PrologCodeBytes += 1;
|
|
if (PackedEpilogOffset >= 0)
|
|
PackedEpilogOffset += 1;
|
|
// If a segment has neither prolog nor epilog, "With full .xdata record,
|
|
// Epilog Count = 1. Epilog Start Index points to end_c."
|
|
// https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling#function-fragments
|
|
// TODO: We can remove this if testing shows zero epilog scope is ok with
|
|
// MS unwinder.
|
|
if (!HasEpilogs)
|
|
// Pack the fake epilog into phantom prolog.
|
|
PackedEpilogOffset = 0;
|
|
}
|
|
|
|
uint32_t TotalCodeBytes = PrologCodeBytes;
|
|
|
|
// Process epilogs.
|
|
MapVector<MCSymbol *, uint32_t> EpilogInfo;
|
|
ARM64ProcessEpilogs(info, &Seg, TotalCodeBytes, EpilogInfo);
|
|
|
|
// Code Words, Epilog count, E, X, Vers, Function Length
|
|
uint32_t row1 = 0x0;
|
|
uint32_t CodeWords = TotalCodeBytes / 4;
|
|
uint32_t CodeWordsMod = TotalCodeBytes % 4;
|
|
if (CodeWordsMod)
|
|
CodeWords++;
|
|
uint32_t EpilogCount =
|
|
PackedEpilogOffset >= 0 ? PackedEpilogOffset : Seg.Epilogs.size();
|
|
bool ExtensionWord = EpilogCount > 31 || TotalCodeBytes > 124;
|
|
if (!ExtensionWord) {
|
|
row1 |= (EpilogCount & 0x1F) << 22;
|
|
row1 |= (CodeWords & 0x1F) << 27;
|
|
}
|
|
if (info->HandlesExceptions) // X
|
|
row1 |= 1 << 20;
|
|
if (PackedEpilogOffset >= 0) // E
|
|
row1 |= 1 << 21;
|
|
row1 |= SegLength & 0x3FFFF;
|
|
streamer.emitInt32(row1);
|
|
|
|
// Extended Code Words, Extended Epilog Count
|
|
if (ExtensionWord) {
|
|
// FIXME: We should be able to split unwind info into multiple sections.
|
|
if (CodeWords > 0xFF || EpilogCount > 0xFFFF)
|
|
report_fatal_error(
|
|
"SEH unwind data splitting is only implemented for large functions, "
|
|
"cases of too many code words or too many epilogs will be done "
|
|
"later");
|
|
uint32_t row2 = 0x0;
|
|
row2 |= (CodeWords & 0xFF) << 16;
|
|
row2 |= (EpilogCount & 0xFFFF);
|
|
streamer.emitInt32(row2);
|
|
}
|
|
|
|
if (PackedEpilogOffset < 0) {
|
|
// Epilog Start Index, Epilog Start Offset
|
|
for (auto &I : EpilogInfo) {
|
|
MCSymbol *EpilogStart = I.first;
|
|
uint32_t EpilogIndex = I.second;
|
|
// Epilog offset within the Segment.
|
|
uint32_t EpilogOffset = (uint32_t)(Seg.Epilogs[EpilogStart] - Seg.Offset);
|
|
if (EpilogOffset)
|
|
EpilogOffset /= 4;
|
|
uint32_t row3 = EpilogOffset;
|
|
row3 |= (EpilogIndex & 0x3FF) << 22;
|
|
streamer.emitInt32(row3);
|
|
}
|
|
}
|
|
|
|
// Note that even for segments that have no prolog, we still need to emit
|
|
// prolog unwinding opcodes so that the unwinder knows how to unwind from
|
|
// such a segment.
|
|
// The end_c opcode at the start indicates to the unwinder that the actual
|
|
// prolog is outside of the current segment, and the unwinder shouldn't try
|
|
// to check for unwinding from a partial prolog.
|
|
if (!HasProlog)
|
|
// Emit an end_c.
|
|
streamer.emitInt8((uint8_t)0xE5);
|
|
|
|
// Emit prolog unwind instructions (in reverse order).
|
|
for (auto Inst : llvm::reverse(info->Instructions))
|
|
ARM64EmitUnwindCode(streamer, Inst);
|
|
|
|
// Emit epilog unwind instructions
|
|
for (auto &I : Seg.Epilogs) {
|
|
auto &EpilogInstrs = info->EpilogMap[I.first].Instructions;
|
|
for (const WinEH::Instruction &inst : EpilogInstrs)
|
|
ARM64EmitUnwindCode(streamer, inst);
|
|
}
|
|
|
|
int32_t BytesMod = CodeWords * 4 - TotalCodeBytes;
|
|
assert(BytesMod >= 0);
|
|
for (int i = 0; i < BytesMod; i++)
|
|
streamer.emitInt8(0xE3);
|
|
|
|
if (info->HandlesExceptions)
|
|
streamer.emitValue(
|
|
MCSymbolRefExpr::create(info->ExceptionHandler,
|
|
MCSymbolRefExpr::VK_COFF_IMGREL32, context),
|
|
4);
|
|
}
|
|
|
|
// Populate the .xdata section. The format of .xdata on ARM64 is documented at
|
|
// https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
|
|
static void ARM64EmitUnwindInfo(MCStreamer &streamer, WinEH::FrameInfo *info,
|
|
bool TryPacked = true) {
|
|
// If this UNWIND_INFO already has a symbol, it's already been emitted.
|
|
if (info->Symbol)
|
|
return;
|
|
// If there's no unwind info here (not even a terminating UOP_End), the
|
|
// unwind info is considered bogus and skipped. If this was done in
|
|
// response to an explicit .seh_handlerdata, the associated trailing
|
|
// handler data is left orphaned in the xdata section.
|
|
if (info->empty()) {
|
|
info->EmitAttempted = true;
|
|
return;
|
|
}
|
|
if (info->EmitAttempted) {
|
|
// If we tried to emit unwind info before (due to an explicit
|
|
// .seh_handlerdata directive), but skipped it (because there was no
|
|
// valid information to emit at the time), and it later got valid unwind
|
|
// opcodes, we can't emit it here, because the trailing handler data
|
|
// was already emitted elsewhere in the xdata section.
|
|
streamer.getContext().reportError(
|
|
SMLoc(), "Earlier .seh_handlerdata for " + info->Function->getName() +
|
|
" skipped due to no unwind info at the time "
|
|
"(.seh_handlerdata too early?), but the function later "
|
|
"did get unwind info that can't be emitted");
|
|
return;
|
|
}
|
|
|
|
simplifyARM64Opcodes(info->Instructions, false);
|
|
for (auto &I : info->EpilogMap)
|
|
simplifyARM64Opcodes(I.second.Instructions, true);
|
|
|
|
int64_t RawFuncLength;
|
|
if (!info->FuncletOrFuncEnd) {
|
|
report_fatal_error("FuncletOrFuncEnd not set");
|
|
} else {
|
|
// FIXME: GetAbsDifference tries to compute the length of the function
|
|
// immediately, before the whole file is emitted, but in general
|
|
// that's impossible: the size in bytes of certain assembler directives
|
|
// like .align and .fill is not known until the whole file is parsed and
|
|
// relaxations are applied. Currently, GetAbsDifference fails with a fatal
|
|
// error in that case. (We mostly don't hit this because inline assembly
|
|
// specifying those directives is rare, and we don't normally try to
|
|
// align loops on AArch64.)
|
|
//
|
|
// There are two potential approaches to delaying the computation. One,
|
|
// we could emit something like ".word (endfunc-beginfunc)/4+0x10800000",
|
|
// as long as we have some conservative estimate we could use to prove
|
|
// that we don't need to split the unwind data. Emitting the constant
|
|
// is straightforward, but there's no existing code for estimating the
|
|
// size of the function.
|
|
//
|
|
// The other approach would be to use a dedicated, relaxable fragment,
|
|
// which could grow to accommodate splitting the unwind data if
|
|
// necessary. This is more straightforward, since it automatically works
|
|
// without any new infrastructure, and it's consistent with how we handle
|
|
// relaxation in other contexts. But it would require some refactoring
|
|
// to move parts of the pdata/xdata emission into the implementation of
|
|
// a fragment. We could probably continue to encode the unwind codes
|
|
// here, but we'd have to emit the pdata, the xdata header, and the
|
|
// epilogue scopes later, since they depend on whether the we need to
|
|
// split the unwind data.
|
|
//
|
|
// If this is fixed, remove code in AArch64ISelLowering.cpp that
|
|
// disables loop alignment on Windows.
|
|
RawFuncLength = GetAbsDifference(streamer, info->FuncletOrFuncEnd,
|
|
info->Begin);
|
|
}
|
|
|
|
ARM64FindSegmentsInFunction(streamer, info, RawFuncLength);
|
|
|
|
info->PrologCodeBytes = ARM64CountOfUnwindCodes(info->Instructions);
|
|
for (auto &S : info->Segments)
|
|
ARM64EmitUnwindInfoForSegment(streamer, info, S, TryPacked);
|
|
|
|
// Clear prolog instructions after unwind info is emitted for all segments.
|
|
info->Instructions.clear();
|
|
}
|
|
|
|
static uint32_t ARMCountOfUnwindCodes(ArrayRef<WinEH::Instruction> Insns) {
|
|
uint32_t Count = 0;
|
|
for (const auto &I : Insns) {
|
|
switch (static_cast<Win64EH::UnwindOpcodes>(I.Operation)) {
|
|
default:
|
|
llvm_unreachable("Unsupported ARM unwind code");
|
|
case Win64EH::UOP_AllocSmall:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_AllocLarge:
|
|
Count += 3;
|
|
break;
|
|
case Win64EH::UOP_AllocHuge:
|
|
Count += 4;
|
|
break;
|
|
case Win64EH::UOP_WideAllocMedium:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_WideAllocLarge:
|
|
Count += 3;
|
|
break;
|
|
case Win64EH::UOP_WideAllocHuge:
|
|
Count += 4;
|
|
break;
|
|
case Win64EH::UOP_WideSaveRegMask:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveSP:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_SaveRegsR4R7LR:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_WideSaveRegsR4R11LR:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegD8D15:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_SaveRegMask:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveLR:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegD0D15:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegD16D31:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_Nop:
|
|
case Win64EH::UOP_WideNop:
|
|
case Win64EH::UOP_End:
|
|
case Win64EH::UOP_EndNop:
|
|
case Win64EH::UOP_WideEndNop:
|
|
Count += 1;
|
|
break;
|
|
case Win64EH::UOP_Custom: {
|
|
int J;
|
|
for (J = 3; J > 0; J--)
|
|
if (I.Offset & (0xffu << (8 * J)))
|
|
break;
|
|
Count += J + 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
static uint32_t ARMCountOfInstructionBytes(ArrayRef<WinEH::Instruction> Insns,
|
|
bool *HasCustom = nullptr) {
|
|
uint32_t Count = 0;
|
|
for (const auto &I : Insns) {
|
|
switch (static_cast<Win64EH::UnwindOpcodes>(I.Operation)) {
|
|
default:
|
|
llvm_unreachable("Unsupported ARM unwind code");
|
|
case Win64EH::UOP_AllocSmall:
|
|
case Win64EH::UOP_AllocLarge:
|
|
case Win64EH::UOP_AllocHuge:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_WideAllocMedium:
|
|
case Win64EH::UOP_WideAllocLarge:
|
|
case Win64EH::UOP_WideAllocHuge:
|
|
Count += 4;
|
|
break;
|
|
case Win64EH::UOP_WideSaveRegMask:
|
|
case Win64EH::UOP_WideSaveRegsR4R11LR:
|
|
Count += 4;
|
|
break;
|
|
case Win64EH::UOP_SaveSP:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveRegMask:
|
|
case Win64EH::UOP_SaveRegsR4R7LR:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_SaveFRegD8D15:
|
|
case Win64EH::UOP_SaveFRegD0D15:
|
|
case Win64EH::UOP_SaveFRegD16D31:
|
|
Count += 4;
|
|
break;
|
|
case Win64EH::UOP_SaveLR:
|
|
Count += 4;
|
|
break;
|
|
case Win64EH::UOP_Nop:
|
|
case Win64EH::UOP_EndNop:
|
|
Count += 2;
|
|
break;
|
|
case Win64EH::UOP_WideNop:
|
|
case Win64EH::UOP_WideEndNop:
|
|
Count += 4;
|
|
break;
|
|
case Win64EH::UOP_End:
|
|
// This doesn't map to any instruction
|
|
break;
|
|
case Win64EH::UOP_Custom:
|
|
// We can't reason about what instructions this maps to; return a
|
|
// phony number to make sure we don't accidentally do epilog packing.
|
|
Count += 1000;
|
|
if (HasCustom)
|
|
*HasCustom = true;
|
|
break;
|
|
}
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
static void checkARMInstructions(MCStreamer &Streamer,
|
|
ArrayRef<WinEH::Instruction> Insns,
|
|
const MCSymbol *Begin, const MCSymbol *End,
|
|
StringRef Name, StringRef Type) {
|
|
if (!End)
|
|
return;
|
|
std::optional<int64_t> MaybeDistance =
|
|
GetOptionalAbsDifference(Streamer, End, Begin);
|
|
if (!MaybeDistance)
|
|
return;
|
|
uint32_t Distance = (uint32_t)*MaybeDistance;
|
|
bool HasCustom = false;
|
|
uint32_t InstructionBytes = ARMCountOfInstructionBytes(Insns, &HasCustom);
|
|
if (HasCustom)
|
|
return;
|
|
if (Distance != InstructionBytes) {
|
|
Streamer.getContext().reportError(
|
|
SMLoc(), "Incorrect size for " + Name + " " + Type + ": " +
|
|
Twine(Distance) +
|
|
" bytes of instructions in range, but .seh directives "
|
|
"corresponding to " +
|
|
Twine(InstructionBytes) + " bytes\n");
|
|
}
|
|
}
|
|
|
|
static bool isARMTerminator(const WinEH::Instruction &inst) {
|
|
switch (static_cast<Win64EH::UnwindOpcodes>(inst.Operation)) {
|
|
case Win64EH::UOP_End:
|
|
case Win64EH::UOP_EndNop:
|
|
case Win64EH::UOP_WideEndNop:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Unwind opcode encodings and restrictions are documented at
|
|
// https://docs.microsoft.com/en-us/cpp/build/arm-exception-handling
|
|
static void ARMEmitUnwindCode(MCStreamer &streamer,
|
|
const WinEH::Instruction &inst) {
|
|
uint32_t w, lr;
|
|
int i;
|
|
switch (static_cast<Win64EH::UnwindOpcodes>(inst.Operation)) {
|
|
default:
|
|
llvm_unreachable("Unsupported ARM unwind code");
|
|
case Win64EH::UOP_AllocSmall:
|
|
assert((inst.Offset & 3) == 0);
|
|
assert(inst.Offset / 4 <= 0x7f);
|
|
streamer.emitInt8(inst.Offset / 4);
|
|
break;
|
|
case Win64EH::UOP_WideSaveRegMask:
|
|
assert((inst.Register & ~0x5fff) == 0);
|
|
lr = (inst.Register >> 14) & 1;
|
|
w = 0x8000 | (inst.Register & 0x1fff) | (lr << 13);
|
|
streamer.emitInt8((w >> 8) & 0xff);
|
|
streamer.emitInt8((w >> 0) & 0xff);
|
|
break;
|
|
case Win64EH::UOP_SaveSP:
|
|
assert(inst.Register <= 0x0f);
|
|
streamer.emitInt8(0xc0 | inst.Register);
|
|
break;
|
|
case Win64EH::UOP_SaveRegsR4R7LR:
|
|
assert(inst.Register >= 4 && inst.Register <= 7);
|
|
assert(inst.Offset <= 1);
|
|
streamer.emitInt8(0xd0 | (inst.Register - 4) | (inst.Offset << 2));
|
|
break;
|
|
case Win64EH::UOP_WideSaveRegsR4R11LR:
|
|
assert(inst.Register >= 8 && inst.Register <= 11);
|
|
assert(inst.Offset <= 1);
|
|
streamer.emitInt8(0xd8 | (inst.Register - 8) | (inst.Offset << 2));
|
|
break;
|
|
case Win64EH::UOP_SaveFRegD8D15:
|
|
assert(inst.Register >= 8 && inst.Register <= 15);
|
|
streamer.emitInt8(0xe0 | (inst.Register - 8));
|
|
break;
|
|
case Win64EH::UOP_WideAllocMedium:
|
|
assert((inst.Offset & 3) == 0);
|
|
assert(inst.Offset / 4 <= 0x3ff);
|
|
w = 0xe800 | (inst.Offset / 4);
|
|
streamer.emitInt8((w >> 8) & 0xff);
|
|
streamer.emitInt8((w >> 0) & 0xff);
|
|
break;
|
|
case Win64EH::UOP_SaveRegMask:
|
|
assert((inst.Register & ~0x40ff) == 0);
|
|
lr = (inst.Register >> 14) & 1;
|
|
w = 0xec00 | (inst.Register & 0x0ff) | (lr << 8);
|
|
streamer.emitInt8((w >> 8) & 0xff);
|
|
streamer.emitInt8((w >> 0) & 0xff);
|
|
break;
|
|
case Win64EH::UOP_SaveLR:
|
|
assert((inst.Offset & 3) == 0);
|
|
assert(inst.Offset / 4 <= 0x0f);
|
|
streamer.emitInt8(0xef);
|
|
streamer.emitInt8(inst.Offset / 4);
|
|
break;
|
|
case Win64EH::UOP_SaveFRegD0D15:
|
|
assert(inst.Register <= 15);
|
|
assert(inst.Offset <= 15);
|
|
assert(inst.Register <= inst.Offset);
|
|
streamer.emitInt8(0xf5);
|
|
streamer.emitInt8((inst.Register << 4) | inst.Offset);
|
|
break;
|
|
case Win64EH::UOP_SaveFRegD16D31:
|
|
assert(inst.Register >= 16 && inst.Register <= 31);
|
|
assert(inst.Offset >= 16 && inst.Offset <= 31);
|
|
assert(inst.Register <= inst.Offset);
|
|
streamer.emitInt8(0xf6);
|
|
streamer.emitInt8(((inst.Register - 16) << 4) | (inst.Offset - 16));
|
|
break;
|
|
case Win64EH::UOP_AllocLarge:
|
|
assert((inst.Offset & 3) == 0);
|
|
assert(inst.Offset / 4 <= 0xffff);
|
|
w = inst.Offset / 4;
|
|
streamer.emitInt8(0xf7);
|
|
streamer.emitInt8((w >> 8) & 0xff);
|
|
streamer.emitInt8((w >> 0) & 0xff);
|
|
break;
|
|
case Win64EH::UOP_AllocHuge:
|
|
assert((inst.Offset & 3) == 0);
|
|
assert(inst.Offset / 4 <= 0xffffff);
|
|
w = inst.Offset / 4;
|
|
streamer.emitInt8(0xf8);
|
|
streamer.emitInt8((w >> 16) & 0xff);
|
|
streamer.emitInt8((w >> 8) & 0xff);
|
|
streamer.emitInt8((w >> 0) & 0xff);
|
|
break;
|
|
case Win64EH::UOP_WideAllocLarge:
|
|
assert((inst.Offset & 3) == 0);
|
|
assert(inst.Offset / 4 <= 0xffff);
|
|
w = inst.Offset / 4;
|
|
streamer.emitInt8(0xf9);
|
|
streamer.emitInt8((w >> 8) & 0xff);
|
|
streamer.emitInt8((w >> 0) & 0xff);
|
|
break;
|
|
case Win64EH::UOP_WideAllocHuge:
|
|
assert((inst.Offset & 3) == 0);
|
|
assert(inst.Offset / 4 <= 0xffffff);
|
|
w = inst.Offset / 4;
|
|
streamer.emitInt8(0xfa);
|
|
streamer.emitInt8((w >> 16) & 0xff);
|
|
streamer.emitInt8((w >> 8) & 0xff);
|
|
streamer.emitInt8((w >> 0) & 0xff);
|
|
break;
|
|
case Win64EH::UOP_Nop:
|
|
streamer.emitInt8(0xfb);
|
|
break;
|
|
case Win64EH::UOP_WideNop:
|
|
streamer.emitInt8(0xfc);
|
|
break;
|
|
case Win64EH::UOP_EndNop:
|
|
streamer.emitInt8(0xfd);
|
|
break;
|
|
case Win64EH::UOP_WideEndNop:
|
|
streamer.emitInt8(0xfe);
|
|
break;
|
|
case Win64EH::UOP_End:
|
|
streamer.emitInt8(0xff);
|
|
break;
|
|
case Win64EH::UOP_Custom:
|
|
for (i = 3; i > 0; i--)
|
|
if (inst.Offset & (0xffu << (8 * i)))
|
|
break;
|
|
for (; i >= 0; i--)
|
|
streamer.emitInt8((inst.Offset >> (8 * i)) & 0xff);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check if an epilog exists as a subset of the end of a prolog (backwards).
|
|
// An epilog may end with one out of three different end opcodes; if this
|
|
// is the first epilog that shares opcodes with the prolog, we can tolerate
|
|
// that this opcode differs (and the caller will update the prolog to use
|
|
// the same end opcode as the epilog). If another epilog already shares
|
|
// opcodes with the prolog, the ending opcode must be a strict match.
|
|
static int getARMOffsetInProlog(const std::vector<WinEH::Instruction> &Prolog,
|
|
const std::vector<WinEH::Instruction> &Epilog,
|
|
bool CanTweakProlog) {
|
|
// Can't find an epilog as a subset if it is longer than the prolog.
|
|
if (Epilog.size() > Prolog.size())
|
|
return -1;
|
|
|
|
// Check that the epilog actually is a perfect match for the end (backwrds)
|
|
// of the prolog.
|
|
// If we can adjust the prolog afterwards, don't check that the end opcodes
|
|
// match.
|
|
int EndIdx = CanTweakProlog ? 1 : 0;
|
|
for (int I = Epilog.size() - 1; I >= EndIdx; I--) {
|
|
// TODO: Could also allow minor mismatches, e.g. "add sp, #16" vs
|
|
// "push {r0-r3}".
|
|
if (Prolog[I] != Epilog[Epilog.size() - 1 - I])
|
|
return -1;
|
|
}
|
|
|
|
if (CanTweakProlog) {
|
|
// Check that both prolog and epilog end with an expected end opcode.
|
|
if (Prolog.front().Operation != Win64EH::UOP_End)
|
|
return -1;
|
|
if (Epilog.back().Operation != Win64EH::UOP_End &&
|
|
Epilog.back().Operation != Win64EH::UOP_EndNop &&
|
|
Epilog.back().Operation != Win64EH::UOP_WideEndNop)
|
|
return -1;
|
|
}
|
|
|
|
// If the epilog was a subset of the prolog, find its offset.
|
|
if (Epilog.size() == Prolog.size())
|
|
return 0;
|
|
return ARMCountOfUnwindCodes(ArrayRef<WinEH::Instruction>(
|
|
&Prolog[Epilog.size()], Prolog.size() - Epilog.size()));
|
|
}
|
|
|
|
static int checkARMPackedEpilog(MCStreamer &streamer, WinEH::FrameInfo *info,
|
|
int PrologCodeBytes) {
|
|
// Can only pack if there's one single epilog
|
|
if (info->EpilogMap.size() != 1)
|
|
return -1;
|
|
|
|
const WinEH::FrameInfo::Epilog &EpilogInfo = info->EpilogMap.begin()->second;
|
|
// Can only pack if the epilog is unconditional
|
|
if (EpilogInfo.Condition != 0xe) // ARMCC::AL
|
|
return -1;
|
|
|
|
const std::vector<WinEH::Instruction> &Epilog = EpilogInfo.Instructions;
|
|
// Make sure we have at least the trailing end opcode
|
|
if (info->Instructions.empty() || Epilog.empty())
|
|
return -1;
|
|
|
|
// Check that the epilog actually is at the very end of the function,
|
|
// otherwise it can't be packed.
|
|
std::optional<int64_t> MaybeDistance = GetOptionalAbsDifference(
|
|
streamer, info->FuncletOrFuncEnd, info->EpilogMap.begin()->first);
|
|
if (!MaybeDistance)
|
|
return -1;
|
|
uint32_t DistanceFromEnd = (uint32_t)*MaybeDistance;
|
|
uint32_t InstructionBytes = ARMCountOfInstructionBytes(Epilog);
|
|
if (DistanceFromEnd != InstructionBytes)
|
|
return -1;
|
|
|
|
int RetVal = -1;
|
|
// Even if we don't end up sharing opcodes with the prolog, we can still
|
|
// write the offset as a packed offset, if the single epilog is located at
|
|
// the end of the function and the offset (pointing after the prolog) fits
|
|
// as a packed offset.
|
|
if (PrologCodeBytes <= 31 &&
|
|
PrologCodeBytes + ARMCountOfUnwindCodes(Epilog) <= 63)
|
|
RetVal = PrologCodeBytes;
|
|
|
|
int Offset =
|
|
getARMOffsetInProlog(info->Instructions, Epilog, /*CanTweakProlog=*/true);
|
|
if (Offset < 0)
|
|
return RetVal;
|
|
|
|
// Check that the offset and prolog size fits in the first word; it's
|
|
// unclear whether the epilog count in the extension word can be taken
|
|
// as packed epilog offset.
|
|
if (Offset > 31 || PrologCodeBytes > 63)
|
|
return RetVal;
|
|
|
|
// Replace the regular end opcode of the prolog with the one from the
|
|
// epilog.
|
|
info->Instructions.front() = Epilog.back();
|
|
|
|
// As we choose to express the epilog as part of the prolog, remove the
|
|
// epilog from the map, so we don't try to emit its opcodes.
|
|
info->EpilogMap.clear();
|
|
return Offset;
|
|
}
|
|
|
|
static bool parseRegMask(unsigned Mask, bool &HasLR, bool &HasR11,
|
|
unsigned &Folded, int &IntRegs) {
|
|
if (Mask & (1 << 14)) {
|
|
HasLR = true;
|
|
Mask &= ~(1 << 14);
|
|
}
|
|
if (Mask & (1 << 11)) {
|
|
HasR11 = true;
|
|
Mask &= ~(1 << 11);
|
|
}
|
|
Folded = 0;
|
|
IntRegs = -1;
|
|
if (!Mask)
|
|
return true;
|
|
int First = 0;
|
|
// Shift right until we have the bits at the bottom
|
|
while ((Mask & 1) == 0) {
|
|
First++;
|
|
Mask >>= 1;
|
|
}
|
|
if ((Mask & (Mask + 1)) != 0)
|
|
return false; // Not a consecutive series of bits? Can't be packed.
|
|
// Count the bits
|
|
int N = 0;
|
|
while (Mask & (1 << N))
|
|
N++;
|
|
if (First < 4) {
|
|
if (First + N < 4)
|
|
return false;
|
|
Folded = 4 - First;
|
|
N -= Folded;
|
|
First = 4;
|
|
}
|
|
if (First > 4)
|
|
return false; // Can't be packed
|
|
if (N >= 1)
|
|
IntRegs = N - 1;
|
|
return true;
|
|
}
|
|
|
|
static bool tryARMPackedUnwind(MCStreamer &streamer, WinEH::FrameInfo *info,
|
|
uint32_t FuncLength) {
|
|
int Step = 0;
|
|
bool Homing = false;
|
|
bool HasR11 = false;
|
|
bool HasChain = false;
|
|
bool HasLR = false;
|
|
int IntRegs = -1; // r4 - r(4+N)
|
|
int FloatRegs = -1; // d8 - d(8+N)
|
|
unsigned PF = 0; // Number of extra pushed registers
|
|
unsigned StackAdjust = 0;
|
|
// Iterate over the prolog and check that all opcodes exactly match
|
|
// the canonical order and form.
|
|
for (const WinEH::Instruction &Inst : info->Instructions) {
|
|
switch (Inst.Operation) {
|
|
default:
|
|
llvm_unreachable("Unsupported ARM unwind code");
|
|
case Win64EH::UOP_Custom:
|
|
case Win64EH::UOP_AllocLarge:
|
|
case Win64EH::UOP_AllocHuge:
|
|
case Win64EH::UOP_WideAllocLarge:
|
|
case Win64EH::UOP_WideAllocHuge:
|
|
case Win64EH::UOP_SaveFRegD0D15:
|
|
case Win64EH::UOP_SaveFRegD16D31:
|
|
// Can't be packed
|
|
return false;
|
|
case Win64EH::UOP_SaveSP:
|
|
// Can't be packed; we can't rely on restoring sp from r11 when
|
|
// unwinding a packed prologue.
|
|
return false;
|
|
case Win64EH::UOP_SaveLR:
|
|
// Can't be present in a packed prologue
|
|
return false;
|
|
|
|
case Win64EH::UOP_End:
|
|
case Win64EH::UOP_EndNop:
|
|
case Win64EH::UOP_WideEndNop:
|
|
if (Step != 0)
|
|
return false;
|
|
Step = 1;
|
|
break;
|
|
|
|
case Win64EH::UOP_SaveRegsR4R7LR:
|
|
case Win64EH::UOP_WideSaveRegsR4R11LR:
|
|
// push {r4-r11,lr}
|
|
if (Step != 1 && Step != 2)
|
|
return false;
|
|
assert(Inst.Register >= 4 && Inst.Register <= 11); // r4-rX
|
|
assert(Inst.Offset <= 1); // Lr
|
|
IntRegs = Inst.Register - 4;
|
|
if (Inst.Register == 11) {
|
|
HasR11 = true;
|
|
IntRegs--;
|
|
}
|
|
if (Inst.Offset)
|
|
HasLR = true;
|
|
Step = 3;
|
|
break;
|
|
|
|
case Win64EH::UOP_SaveRegMask:
|
|
if (Step == 1 && Inst.Register == 0x0f) {
|
|
// push {r0-r3}
|
|
Homing = true;
|
|
Step = 2;
|
|
break;
|
|
}
|
|
[[fallthrough]];
|
|
case Win64EH::UOP_WideSaveRegMask:
|
|
if (Step != 1 && Step != 2)
|
|
return false;
|
|
// push {r4-r9,r11,lr}
|
|
// push {r11,lr}
|
|
// push {r1-r5}
|
|
if (!parseRegMask(Inst.Register, HasLR, HasR11, PF, IntRegs))
|
|
return false;
|
|
Step = 3;
|
|
break;
|
|
|
|
case Win64EH::UOP_Nop:
|
|
// mov r11, sp
|
|
if (Step != 3 || !HasR11 || IntRegs >= 0 || PF > 0)
|
|
return false;
|
|
HasChain = true;
|
|
Step = 4;
|
|
break;
|
|
case Win64EH::UOP_WideNop:
|
|
// add.w r11, sp, #xx
|
|
if (Step != 3 || !HasR11 || (IntRegs < 0 && PF == 0))
|
|
return false;
|
|
HasChain = true;
|
|
Step = 4;
|
|
break;
|
|
|
|
case Win64EH::UOP_SaveFRegD8D15:
|
|
if (Step != 1 && Step != 2 && Step != 3 && Step != 4)
|
|
return false;
|
|
assert(Inst.Register >= 8 && Inst.Register <= 15);
|
|
if (Inst.Register == 15)
|
|
return false; // Can't pack this case, R==7 means no IntRegs
|
|
if (IntRegs >= 0)
|
|
return false;
|
|
FloatRegs = Inst.Register - 8;
|
|
Step = 5;
|
|
break;
|
|
|
|
case Win64EH::UOP_AllocSmall:
|
|
case Win64EH::UOP_WideAllocMedium:
|
|
if (Step != 1 && Step != 2 && Step != 3 && Step != 4 && Step != 5)
|
|
return false;
|
|
if (PF > 0) // Can't have both folded and explicit stack allocation
|
|
return false;
|
|
if (Inst.Offset / 4 >= 0x3f4)
|
|
return false;
|
|
StackAdjust = Inst.Offset / 4;
|
|
Step = 6;
|
|
break;
|
|
}
|
|
}
|
|
if (HasR11 && !HasChain) {
|
|
if (IntRegs + 4 == 10) {
|
|
// r11 stored, but not chaining; can be packed if already saving r4-r10
|
|
// and we can fit r11 into this range.
|
|
IntRegs++;
|
|
HasR11 = false;
|
|
} else
|
|
return false;
|
|
}
|
|
if (HasChain && !HasLR)
|
|
return false;
|
|
|
|
// Packed uneind info can't express multiple epilogues.
|
|
if (info->EpilogMap.size() > 1)
|
|
return false;
|
|
|
|
unsigned EF = 0;
|
|
int Ret = 0;
|
|
if (info->EpilogMap.size() == 0) {
|
|
Ret = 3; // No epilogue
|
|
} else {
|
|
// As the prologue and epilogue aren't exact mirrors of each other,
|
|
// we have to check the epilogue too and see if it matches what we've
|
|
// concluded from the prologue.
|
|
const WinEH::FrameInfo::Epilog &EpilogInfo =
|
|
info->EpilogMap.begin()->second;
|
|
if (EpilogInfo.Condition != 0xe) // ARMCC::AL
|
|
return false;
|
|
const std::vector<WinEH::Instruction> &Epilog = EpilogInfo.Instructions;
|
|
std::optional<int64_t> MaybeDistance = GetOptionalAbsDifference(
|
|
streamer, info->FuncletOrFuncEnd, info->EpilogMap.begin()->first);
|
|
if (!MaybeDistance)
|
|
return false;
|
|
uint32_t DistanceFromEnd = (uint32_t)*MaybeDistance;
|
|
uint32_t InstructionBytes = ARMCountOfInstructionBytes(Epilog);
|
|
if (DistanceFromEnd != InstructionBytes)
|
|
return false;
|
|
|
|
bool GotStackAdjust = false;
|
|
bool GotFloatRegs = false;
|
|
bool GotIntRegs = false;
|
|
bool GotHomingRestore = false;
|
|
bool GotLRRestore = false;
|
|
bool NeedsReturn = false;
|
|
bool GotReturn = false;
|
|
|
|
Step = 6;
|
|
for (const WinEH::Instruction &Inst : Epilog) {
|
|
switch (Inst.Operation) {
|
|
default:
|
|
llvm_unreachable("Unsupported ARM unwind code");
|
|
case Win64EH::UOP_Custom:
|
|
case Win64EH::UOP_AllocLarge:
|
|
case Win64EH::UOP_AllocHuge:
|
|
case Win64EH::UOP_WideAllocLarge:
|
|
case Win64EH::UOP_WideAllocHuge:
|
|
case Win64EH::UOP_SaveFRegD0D15:
|
|
case Win64EH::UOP_SaveFRegD16D31:
|
|
case Win64EH::UOP_SaveSP:
|
|
case Win64EH::UOP_Nop:
|
|
case Win64EH::UOP_WideNop:
|
|
// Can't be packed in an epilogue
|
|
return false;
|
|
|
|
case Win64EH::UOP_AllocSmall:
|
|
case Win64EH::UOP_WideAllocMedium:
|
|
if (Inst.Offset / 4 >= 0x3f4)
|
|
return false;
|
|
if (Step == 6) {
|
|
if (Homing && FloatRegs < 0 && IntRegs < 0 && StackAdjust == 0 &&
|
|
PF == 0 && Inst.Offset == 16) {
|
|
GotHomingRestore = true;
|
|
Step = 10;
|
|
} else {
|
|
if (StackAdjust > 0) {
|
|
// Got stack adjust in prologue too; must match.
|
|
if (StackAdjust != Inst.Offset / 4)
|
|
return false;
|
|
GotStackAdjust = true;
|
|
} else if (PF == Inst.Offset / 4) {
|
|
// Folded prologue, non-folded epilogue
|
|
StackAdjust = Inst.Offset / 4;
|
|
GotStackAdjust = true;
|
|
} else {
|
|
// StackAdjust == 0 in prologue, mismatch
|
|
return false;
|
|
}
|
|
Step = 7;
|
|
}
|
|
} else if (Step == 7 || Step == 8 || Step == 9) {
|
|
if (!Homing || Inst.Offset != 16)
|
|
return false;
|
|
GotHomingRestore = true;
|
|
Step = 10;
|
|
} else
|
|
return false;
|
|
break;
|
|
|
|
case Win64EH::UOP_SaveFRegD8D15:
|
|
if (Step != 6 && Step != 7)
|
|
return false;
|
|
assert(Inst.Register >= 8 && Inst.Register <= 15);
|
|
if (FloatRegs != (int)(Inst.Register - 8))
|
|
return false;
|
|
GotFloatRegs = true;
|
|
Step = 8;
|
|
break;
|
|
|
|
case Win64EH::UOP_SaveRegsR4R7LR:
|
|
case Win64EH::UOP_WideSaveRegsR4R11LR: {
|
|
// push {r4-r11,lr}
|
|
if (Step != 6 && Step != 7 && Step != 8)
|
|
return false;
|
|
assert(Inst.Register >= 4 && Inst.Register <= 11); // r4-rX
|
|
assert(Inst.Offset <= 1); // Lr
|
|
if (Homing && HasLR) {
|
|
// If homing and LR is backed up, we can either restore LR here
|
|
// and return with Ret == 1 or 2, or return with SaveLR below
|
|
if (Inst.Offset) {
|
|
GotLRRestore = true;
|
|
NeedsReturn = true;
|
|
} else {
|
|
// Expecting a separate SaveLR below
|
|
}
|
|
} else {
|
|
if (HasLR != (Inst.Offset == 1))
|
|
return false;
|
|
}
|
|
GotLRRestore = Inst.Offset == 1;
|
|
if (IntRegs < 0) // This opcode must include r4
|
|
return false;
|
|
int Expected = IntRegs;
|
|
if (HasChain) {
|
|
// Can't express r11 here unless IntRegs describe r4-r10
|
|
if (IntRegs != 6)
|
|
return false;
|
|
Expected++;
|
|
}
|
|
if (Expected != (int)(Inst.Register - 4))
|
|
return false;
|
|
GotIntRegs = true;
|
|
Step = 9;
|
|
break;
|
|
}
|
|
|
|
case Win64EH::UOP_SaveRegMask:
|
|
case Win64EH::UOP_WideSaveRegMask: {
|
|
if (Step != 6 && Step != 7 && Step != 8)
|
|
return false;
|
|
// push {r4-r9,r11,lr}
|
|
// push {r11,lr}
|
|
// push {r1-r5}
|
|
bool CurHasLR = false, CurHasR11 = false;
|
|
int Regs;
|
|
if (!parseRegMask(Inst.Register, CurHasLR, CurHasR11, EF, Regs))
|
|
return false;
|
|
if (EF > 0) {
|
|
if (EF != PF && EF != StackAdjust)
|
|
return false;
|
|
}
|
|
if (Homing && HasLR) {
|
|
// If homing and LR is backed up, we can either restore LR here
|
|
// and return with Ret == 1 or 2, or return with SaveLR below
|
|
if (CurHasLR) {
|
|
GotLRRestore = true;
|
|
NeedsReturn = true;
|
|
} else {
|
|
// Expecting a separate SaveLR below
|
|
}
|
|
} else {
|
|
if (CurHasLR != HasLR)
|
|
return false;
|
|
GotLRRestore = CurHasLR;
|
|
}
|
|
int Expected = IntRegs;
|
|
if (HasChain) {
|
|
// If we have chaining, the mask must have included r11.
|
|
if (!CurHasR11)
|
|
return false;
|
|
} else if (Expected == 7) {
|
|
// If we don't have chaining, the mask could still include r11,
|
|
// expressed as part of IntRegs Instead.
|
|
Expected--;
|
|
if (!CurHasR11)
|
|
return false;
|
|
} else {
|
|
// Neither HasChain nor r11 included in IntRegs, must not have r11
|
|
// here either.
|
|
if (CurHasR11)
|
|
return false;
|
|
}
|
|
if (Expected != Regs)
|
|
return false;
|
|
GotIntRegs = true;
|
|
Step = 9;
|
|
break;
|
|
}
|
|
|
|
case Win64EH::UOP_SaveLR:
|
|
if (Step != 6 && Step != 7 && Step != 8 && Step != 9)
|
|
return false;
|
|
if (!Homing || Inst.Offset != 20 || GotLRRestore)
|
|
return false;
|
|
GotLRRestore = true;
|
|
GotHomingRestore = true;
|
|
Step = 10;
|
|
break;
|
|
|
|
case Win64EH::UOP_EndNop:
|
|
case Win64EH::UOP_WideEndNop:
|
|
GotReturn = true;
|
|
Ret = (Inst.Operation == Win64EH::UOP_EndNop) ? 1 : 2;
|
|
[[fallthrough]];
|
|
case Win64EH::UOP_End:
|
|
if (Step != 6 && Step != 7 && Step != 8 && Step != 9 && Step != 10)
|
|
return false;
|
|
Step = 11;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Step != 11)
|
|
return false;
|
|
if (StackAdjust > 0 && !GotStackAdjust && EF == 0)
|
|
return false;
|
|
if (FloatRegs >= 0 && !GotFloatRegs)
|
|
return false;
|
|
if (IntRegs >= 0 && !GotIntRegs)
|
|
return false;
|
|
if (Homing && !GotHomingRestore)
|
|
return false;
|
|
if (HasLR && !GotLRRestore)
|
|
return false;
|
|
if (NeedsReturn && !GotReturn)
|
|
return false;
|
|
}
|
|
|
|
assert(PF == 0 || EF == 0 ||
|
|
StackAdjust == 0); // Can't have adjust in all three
|
|
if (PF > 0 || EF > 0) {
|
|
StackAdjust = PF > 0 ? (PF - 1) : (EF - 1);
|
|
assert(StackAdjust <= 3);
|
|
StackAdjust |= 0x3f0;
|
|
if (PF > 0)
|
|
StackAdjust |= 1 << 2;
|
|
if (EF > 0)
|
|
StackAdjust |= 1 << 3;
|
|
}
|
|
|
|
assert(FuncLength <= 0x7FF && "FuncLength should have been checked earlier");
|
|
int Flag = info->Fragment ? 0x02 : 0x01;
|
|
int H = Homing ? 1 : 0;
|
|
int L = HasLR ? 1 : 0;
|
|
int C = HasChain ? 1 : 0;
|
|
assert(IntRegs < 0 || FloatRegs < 0);
|
|
unsigned Reg, R;
|
|
if (IntRegs >= 0) {
|
|
Reg = IntRegs;
|
|
assert(Reg <= 7);
|
|
R = 0;
|
|
} else if (FloatRegs >= 0) {
|
|
Reg = FloatRegs;
|
|
assert(Reg < 7);
|
|
R = 1;
|
|
} else {
|
|
// No int or float regs stored (except possibly R11,LR)
|
|
Reg = 7;
|
|
R = 1;
|
|
}
|
|
info->PackedInfo |= Flag << 0;
|
|
info->PackedInfo |= (FuncLength & 0x7FF) << 2;
|
|
info->PackedInfo |= (Ret & 0x3) << 13;
|
|
info->PackedInfo |= H << 15;
|
|
info->PackedInfo |= Reg << 16;
|
|
info->PackedInfo |= R << 19;
|
|
info->PackedInfo |= L << 20;
|
|
info->PackedInfo |= C << 21;
|
|
assert(StackAdjust <= 0x3ff);
|
|
info->PackedInfo |= StackAdjust << 22;
|
|
return true;
|
|
}
|
|
|
|
// Populate the .xdata section. The format of .xdata on ARM is documented at
|
|
// https://docs.microsoft.com/en-us/cpp/build/arm-exception-handling
|
|
static void ARMEmitUnwindInfo(MCStreamer &streamer, WinEH::FrameInfo *info,
|
|
bool TryPacked = true) {
|
|
// If this UNWIND_INFO already has a symbol, it's already been emitted.
|
|
if (info->Symbol)
|
|
return;
|
|
// If there's no unwind info here (not even a terminating UOP_End), the
|
|
// unwind info is considered bogus and skipped. If this was done in
|
|
// response to an explicit .seh_handlerdata, the associated trailing
|
|
// handler data is left orphaned in the xdata section.
|
|
if (info->empty()) {
|
|
info->EmitAttempted = true;
|
|
return;
|
|
}
|
|
if (info->EmitAttempted) {
|
|
// If we tried to emit unwind info before (due to an explicit
|
|
// .seh_handlerdata directive), but skipped it (because there was no
|
|
// valid information to emit at the time), and it later got valid unwind
|
|
// opcodes, we can't emit it here, because the trailing handler data
|
|
// was already emitted elsewhere in the xdata section.
|
|
streamer.getContext().reportError(
|
|
SMLoc(), "Earlier .seh_handlerdata for " + info->Function->getName() +
|
|
" skipped due to no unwind info at the time "
|
|
"(.seh_handlerdata too early?), but the function later "
|
|
"did get unwind info that can't be emitted");
|
|
return;
|
|
}
|
|
|
|
MCContext &context = streamer.getContext();
|
|
MCSymbol *Label = context.createTempSymbol();
|
|
|
|
streamer.emitValueToAlignment(Align(4));
|
|
streamer.emitLabel(Label);
|
|
info->Symbol = Label;
|
|
|
|
if (!info->PrologEnd)
|
|
streamer.getContext().reportError(SMLoc(), "Prologue in " +
|
|
info->Function->getName() +
|
|
" not correctly terminated");
|
|
|
|
if (info->PrologEnd && !info->Fragment)
|
|
checkARMInstructions(streamer, info->Instructions, info->Begin,
|
|
info->PrologEnd, info->Function->getName(),
|
|
"prologue");
|
|
for (auto &I : info->EpilogMap) {
|
|
MCSymbol *EpilogStart = I.first;
|
|
auto &Epilog = I.second;
|
|
checkARMInstructions(streamer, Epilog.Instructions, EpilogStart, Epilog.End,
|
|
info->Function->getName(), "epilogue");
|
|
if (Epilog.Instructions.empty() ||
|
|
!isARMTerminator(Epilog.Instructions.back()))
|
|
streamer.getContext().reportError(
|
|
SMLoc(), "Epilogue in " + info->Function->getName() +
|
|
" not correctly terminated");
|
|
}
|
|
|
|
std::optional<int64_t> RawFuncLength;
|
|
const MCExpr *FuncLengthExpr = nullptr;
|
|
if (!info->FuncletOrFuncEnd) {
|
|
report_fatal_error("FuncletOrFuncEnd not set");
|
|
} else {
|
|
// As the size of many thumb2 instructions isn't known until later,
|
|
// we can't always rely on being able to calculate the absolute
|
|
// length of the function here. If we can't calculate it, defer it
|
|
// to a relocation.
|
|
//
|
|
// In such a case, we won't know if the function is too long so that
|
|
// the unwind info would need to be split (but this isn't implemented
|
|
// anyway).
|
|
RawFuncLength =
|
|
GetOptionalAbsDifference(streamer, info->FuncletOrFuncEnd, info->Begin);
|
|
if (!RawFuncLength)
|
|
FuncLengthExpr =
|
|
GetSubDivExpr(streamer, info->FuncletOrFuncEnd, info->Begin, 2);
|
|
}
|
|
uint32_t FuncLength = 0;
|
|
if (RawFuncLength)
|
|
FuncLength = (uint32_t)*RawFuncLength / 2;
|
|
if (FuncLength > 0x3FFFF)
|
|
report_fatal_error("SEH unwind data splitting not yet implemented");
|
|
uint32_t PrologCodeBytes = ARMCountOfUnwindCodes(info->Instructions);
|
|
uint32_t TotalCodeBytes = PrologCodeBytes;
|
|
|
|
if (!info->HandlesExceptions && RawFuncLength && FuncLength <= 0x7ff &&
|
|
TryPacked) {
|
|
// No exception handlers; check if the prolog and epilog matches the
|
|
// patterns that can be described by the packed format. If we don't
|
|
// know the exact function length yet, we can't do this.
|
|
|
|
// info->Symbol was already set even if we didn't actually write any
|
|
// unwind info there. Keep using that as indicator that this unwind
|
|
// info has been generated already.
|
|
|
|
if (tryARMPackedUnwind(streamer, info, FuncLength))
|
|
return;
|
|
}
|
|
|
|
int PackedEpilogOffset =
|
|
checkARMPackedEpilog(streamer, info, PrologCodeBytes);
|
|
|
|
// Process epilogs.
|
|
MapVector<MCSymbol *, uint32_t> EpilogInfo;
|
|
// Epilogs processed so far.
|
|
std::vector<MCSymbol *> AddedEpilogs;
|
|
|
|
bool CanTweakProlog = true;
|
|
for (auto &I : info->EpilogMap) {
|
|
MCSymbol *EpilogStart = I.first;
|
|
auto &EpilogInstrs = I.second.Instructions;
|
|
uint32_t CodeBytes = ARMCountOfUnwindCodes(EpilogInstrs);
|
|
|
|
MCSymbol *MatchingEpilog =
|
|
FindMatchingEpilog(EpilogInstrs, AddedEpilogs, info);
|
|
int PrologOffset;
|
|
if (MatchingEpilog) {
|
|
assert(EpilogInfo.contains(MatchingEpilog) &&
|
|
"Duplicate epilog not found");
|
|
EpilogInfo[EpilogStart] = EpilogInfo.lookup(MatchingEpilog);
|
|
// Clear the unwind codes in the EpilogMap, so that they don't get output
|
|
// in the logic below.
|
|
EpilogInstrs.clear();
|
|
} else if ((PrologOffset = getARMOffsetInProlog(
|
|
info->Instructions, EpilogInstrs, CanTweakProlog)) >= 0) {
|
|
if (CanTweakProlog) {
|
|
// Replace the regular end opcode of the prolog with the one from the
|
|
// epilog.
|
|
info->Instructions.front() = EpilogInstrs.back();
|
|
// Later epilogs need a strict match for the end opcode.
|
|
CanTweakProlog = false;
|
|
}
|
|
EpilogInfo[EpilogStart] = PrologOffset;
|
|
// Clear the unwind codes in the EpilogMap, so that they don't get output
|
|
// in the logic below.
|
|
EpilogInstrs.clear();
|
|
} else {
|
|
EpilogInfo[EpilogStart] = TotalCodeBytes;
|
|
TotalCodeBytes += CodeBytes;
|
|
AddedEpilogs.push_back(EpilogStart);
|
|
}
|
|
}
|
|
|
|
// Code Words, Epilog count, F, E, X, Vers, Function Length
|
|
uint32_t row1 = 0x0;
|
|
uint32_t CodeWords = TotalCodeBytes / 4;
|
|
uint32_t CodeWordsMod = TotalCodeBytes % 4;
|
|
if (CodeWordsMod)
|
|
CodeWords++;
|
|
uint32_t EpilogCount =
|
|
PackedEpilogOffset >= 0 ? PackedEpilogOffset : info->EpilogMap.size();
|
|
bool ExtensionWord = EpilogCount > 31 || CodeWords > 15;
|
|
if (!ExtensionWord) {
|
|
row1 |= (EpilogCount & 0x1F) << 23;
|
|
row1 |= (CodeWords & 0x0F) << 28;
|
|
}
|
|
if (info->HandlesExceptions) // X
|
|
row1 |= 1 << 20;
|
|
if (PackedEpilogOffset >= 0) // E
|
|
row1 |= 1 << 21;
|
|
if (info->Fragment) // F
|
|
row1 |= 1 << 22;
|
|
row1 |= FuncLength & 0x3FFFF;
|
|
if (RawFuncLength)
|
|
streamer.emitInt32(row1);
|
|
else
|
|
streamer.emitValue(
|
|
MCBinaryExpr::createOr(FuncLengthExpr,
|
|
MCConstantExpr::create(row1, context), context),
|
|
4);
|
|
|
|
// Extended Code Words, Extended Epilog Count
|
|
if (ExtensionWord) {
|
|
// FIXME: We should be able to split unwind info into multiple sections.
|
|
if (CodeWords > 0xFF || EpilogCount > 0xFFFF)
|
|
report_fatal_error("SEH unwind data splitting not yet implemented");
|
|
uint32_t row2 = 0x0;
|
|
row2 |= (CodeWords & 0xFF) << 16;
|
|
row2 |= (EpilogCount & 0xFFFF);
|
|
streamer.emitInt32(row2);
|
|
}
|
|
|
|
if (PackedEpilogOffset < 0) {
|
|
// Epilog Start Index, Epilog Start Offset
|
|
for (auto &I : EpilogInfo) {
|
|
MCSymbol *EpilogStart = I.first;
|
|
uint32_t EpilogIndex = I.second;
|
|
|
|
std::optional<int64_t> MaybeEpilogOffset =
|
|
GetOptionalAbsDifference(streamer, EpilogStart, info->Begin);
|
|
const MCExpr *OffsetExpr = nullptr;
|
|
uint32_t EpilogOffset = 0;
|
|
if (MaybeEpilogOffset)
|
|
EpilogOffset = *MaybeEpilogOffset / 2;
|
|
else
|
|
OffsetExpr = GetSubDivExpr(streamer, EpilogStart, info->Begin, 2);
|
|
|
|
assert(info->EpilogMap.contains(EpilogStart));
|
|
unsigned Condition = info->EpilogMap[EpilogStart].Condition;
|
|
assert(Condition <= 0xf);
|
|
|
|
uint32_t row3 = EpilogOffset;
|
|
row3 |= Condition << 20;
|
|
row3 |= (EpilogIndex & 0x3FF) << 24;
|
|
if (MaybeEpilogOffset)
|
|
streamer.emitInt32(row3);
|
|
else
|
|
streamer.emitValue(
|
|
MCBinaryExpr::createOr(
|
|
OffsetExpr, MCConstantExpr::create(row3, context), context),
|
|
4);
|
|
}
|
|
}
|
|
|
|
// Emit prolog unwind instructions (in reverse order).
|
|
uint8_t numInst = info->Instructions.size();
|
|
for (uint8_t c = 0; c < numInst; ++c) {
|
|
WinEH::Instruction inst = info->Instructions.back();
|
|
info->Instructions.pop_back();
|
|
ARMEmitUnwindCode(streamer, inst);
|
|
}
|
|
|
|
// Emit epilog unwind instructions
|
|
for (auto &I : info->EpilogMap) {
|
|
auto &EpilogInstrs = I.second.Instructions;
|
|
for (const WinEH::Instruction &inst : EpilogInstrs)
|
|
ARMEmitUnwindCode(streamer, inst);
|
|
}
|
|
|
|
int32_t BytesMod = CodeWords * 4 - TotalCodeBytes;
|
|
assert(BytesMod >= 0);
|
|
for (int i = 0; i < BytesMod; i++)
|
|
streamer.emitInt8(0xFB);
|
|
|
|
if (info->HandlesExceptions)
|
|
streamer.emitValue(
|
|
MCSymbolRefExpr::create(info->ExceptionHandler,
|
|
MCSymbolRefExpr::VK_COFF_IMGREL32, context),
|
|
4);
|
|
}
|
|
|
|
static void ARM64EmitRuntimeFunction(MCStreamer &streamer,
|
|
const WinEH::FrameInfo *info) {
|
|
MCContext &context = streamer.getContext();
|
|
|
|
streamer.emitValueToAlignment(Align(4));
|
|
for (const auto &S : info->Segments) {
|
|
EmitSymbolRefWithOfs(streamer, info->Begin, S.Offset);
|
|
if (info->PackedInfo)
|
|
streamer.emitInt32(info->PackedInfo);
|
|
else
|
|
streamer.emitValue(
|
|
MCSymbolRefExpr::create(S.Symbol, MCSymbolRefExpr::VK_COFF_IMGREL32,
|
|
context),
|
|
4);
|
|
}
|
|
}
|
|
|
|
|
|
static void ARMEmitRuntimeFunction(MCStreamer &streamer,
|
|
const WinEH::FrameInfo *info) {
|
|
MCContext &context = streamer.getContext();
|
|
|
|
streamer.emitValueToAlignment(Align(4));
|
|
EmitSymbolRefWithOfs(streamer, info->Begin, info->Begin);
|
|
if (info->PackedInfo)
|
|
streamer.emitInt32(info->PackedInfo);
|
|
else
|
|
streamer.emitValue(
|
|
MCSymbolRefExpr::create(info->Symbol, MCSymbolRefExpr::VK_COFF_IMGREL32,
|
|
context),
|
|
4);
|
|
}
|
|
|
|
void llvm::Win64EH::ARM64UnwindEmitter::Emit(MCStreamer &Streamer) const {
|
|
// Emit the unwind info structs first.
|
|
for (const auto &CFI : Streamer.getWinFrameInfos()) {
|
|
WinEH::FrameInfo *Info = CFI.get();
|
|
if (Info->empty())
|
|
continue;
|
|
MCSection *XData = Streamer.getAssociatedXDataSection(CFI->TextSection);
|
|
Streamer.switchSection(XData);
|
|
ARM64EmitUnwindInfo(Streamer, Info);
|
|
}
|
|
|
|
// Now emit RUNTIME_FUNCTION entries.
|
|
for (const auto &CFI : Streamer.getWinFrameInfos()) {
|
|
WinEH::FrameInfo *Info = CFI.get();
|
|
// ARM64EmitUnwindInfo above clears the info struct, so we can't check
|
|
// empty here. But if a Symbol is set, we should create the corresponding
|
|
// pdata entry.
|
|
if (!Info->Symbol)
|
|
continue;
|
|
MCSection *PData = Streamer.getAssociatedPDataSection(CFI->TextSection);
|
|
Streamer.switchSection(PData);
|
|
ARM64EmitRuntimeFunction(Streamer, Info);
|
|
}
|
|
}
|
|
|
|
void llvm::Win64EH::ARM64UnwindEmitter::EmitUnwindInfo(MCStreamer &Streamer,
|
|
WinEH::FrameInfo *info,
|
|
bool HandlerData) const {
|
|
// Called if there's an .seh_handlerdata directive before the end of the
|
|
// function. This forces writing the xdata record already here - and
|
|
// in this case, the function isn't actually ended already, but the xdata
|
|
// record needs to know the function length. In these cases, if the funclet
|
|
// end hasn't been marked yet, the xdata function length won't cover the
|
|
// whole function, only up to this point.
|
|
if (!info->FuncletOrFuncEnd) {
|
|
Streamer.switchSection(info->TextSection);
|
|
info->FuncletOrFuncEnd = Streamer.emitCFILabel();
|
|
}
|
|
// Switch sections (the static function above is meant to be called from
|
|
// here and from Emit().
|
|
MCSection *XData = Streamer.getAssociatedXDataSection(info->TextSection);
|
|
Streamer.switchSection(XData);
|
|
ARM64EmitUnwindInfo(Streamer, info, /* TryPacked = */ !HandlerData);
|
|
}
|
|
|
|
void llvm::Win64EH::ARMUnwindEmitter::Emit(MCStreamer &Streamer) const {
|
|
// Emit the unwind info structs first.
|
|
for (const auto &CFI : Streamer.getWinFrameInfos()) {
|
|
WinEH::FrameInfo *Info = CFI.get();
|
|
if (Info->empty())
|
|
continue;
|
|
MCSection *XData = Streamer.getAssociatedXDataSection(CFI->TextSection);
|
|
Streamer.switchSection(XData);
|
|
ARMEmitUnwindInfo(Streamer, Info);
|
|
}
|
|
|
|
// Now emit RUNTIME_FUNCTION entries.
|
|
for (const auto &CFI : Streamer.getWinFrameInfos()) {
|
|
WinEH::FrameInfo *Info = CFI.get();
|
|
// ARMEmitUnwindInfo above clears the info struct, so we can't check
|
|
// empty here. But if a Symbol is set, we should create the corresponding
|
|
// pdata entry.
|
|
if (!Info->Symbol)
|
|
continue;
|
|
MCSection *PData = Streamer.getAssociatedPDataSection(CFI->TextSection);
|
|
Streamer.switchSection(PData);
|
|
ARMEmitRuntimeFunction(Streamer, Info);
|
|
}
|
|
}
|
|
|
|
void llvm::Win64EH::ARMUnwindEmitter::EmitUnwindInfo(MCStreamer &Streamer,
|
|
WinEH::FrameInfo *info,
|
|
bool HandlerData) const {
|
|
// Called if there's an .seh_handlerdata directive before the end of the
|
|
// function. This forces writing the xdata record already here - and
|
|
// in this case, the function isn't actually ended already, but the xdata
|
|
// record needs to know the function length. In these cases, if the funclet
|
|
// end hasn't been marked yet, the xdata function length won't cover the
|
|
// whole function, only up to this point.
|
|
if (!info->FuncletOrFuncEnd) {
|
|
Streamer.switchSection(info->TextSection);
|
|
info->FuncletOrFuncEnd = Streamer.emitCFILabel();
|
|
}
|
|
// Switch sections (the static function above is meant to be called from
|
|
// here and from Emit().
|
|
MCSection *XData = Streamer.getAssociatedXDataSection(info->TextSection);
|
|
Streamer.switchSection(XData);
|
|
ARMEmitUnwindInfo(Streamer, info, /* TryPacked = */ !HandlerData);
|
|
}
|