
- There is no restriction on a loop with controlled convergent operations when the relevant tokens are defined and used within the loop. - When a token defined outside a loop is used inside (also called a loop convergence heart), unrolling is allowed only in the absence of remainder or runtime checks. - When a token defined inside a loop is used outside, such a loop is said to be "extended". This loop can only be unrolled by also duplicating the extended part lying outside the loop. Such unrolling is disabled for now. - Clean up loop hearts: When unrolling a loop with a heart, duplicating the heart will introduce multiple static uses of a convergence control token in a cycle that does not contain its definition. This violates the static rules for tokens, and needs to be cleaned up into a single occurrence of the intrinsic. - Spell out the initializer for UnrollLoopOptions to improve readability. Original implementation [D85605] by Nicolai Haehnle <nicolai.haehnle@amd.com>.
236 lines
8.6 KiB
C++
236 lines
8.6 KiB
C++
//===- CodeMetrics.cpp - Code cost measurements ---------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements code cost measurement utilities.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/CodeMetrics.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/InstructionCost.h"
|
|
|
|
#define DEBUG_TYPE "code-metrics"
|
|
|
|
using namespace llvm;
|
|
|
|
static void
|
|
appendSpeculatableOperands(const Value *V,
|
|
SmallPtrSetImpl<const Value *> &Visited,
|
|
SmallVectorImpl<const Value *> &Worklist) {
|
|
const User *U = dyn_cast<User>(V);
|
|
if (!U)
|
|
return;
|
|
|
|
for (const Value *Operand : U->operands())
|
|
if (Visited.insert(Operand).second)
|
|
if (const auto *I = dyn_cast<Instruction>(Operand))
|
|
if (!I->mayHaveSideEffects() && !I->isTerminator())
|
|
Worklist.push_back(I);
|
|
}
|
|
|
|
static void completeEphemeralValues(SmallPtrSetImpl<const Value *> &Visited,
|
|
SmallVectorImpl<const Value *> &Worklist,
|
|
SmallPtrSetImpl<const Value *> &EphValues) {
|
|
// Note: We don't speculate PHIs here, so we'll miss instruction chains kept
|
|
// alive only by ephemeral values.
|
|
|
|
// Walk the worklist using an index but without caching the size so we can
|
|
// append more entries as we process the worklist. This forms a queue without
|
|
// quadratic behavior by just leaving processed nodes at the head of the
|
|
// worklist forever.
|
|
for (int i = 0; i < (int)Worklist.size(); ++i) {
|
|
const Value *V = Worklist[i];
|
|
|
|
assert(Visited.count(V) &&
|
|
"Failed to add a worklist entry to our visited set!");
|
|
|
|
// If all uses of this value are ephemeral, then so is this value.
|
|
if (!all_of(V->users(), [&](const User *U) { return EphValues.count(U); }))
|
|
continue;
|
|
|
|
EphValues.insert(V);
|
|
LLVM_DEBUG(dbgs() << "Ephemeral Value: " << *V << "\n");
|
|
|
|
// Append any more operands to consider.
|
|
appendSpeculatableOperands(V, Visited, Worklist);
|
|
}
|
|
}
|
|
|
|
// Find all ephemeral values.
|
|
void CodeMetrics::collectEphemeralValues(
|
|
const Loop *L, AssumptionCache *AC,
|
|
SmallPtrSetImpl<const Value *> &EphValues) {
|
|
SmallPtrSet<const Value *, 32> Visited;
|
|
SmallVector<const Value *, 16> Worklist;
|
|
|
|
for (auto &AssumeVH : AC->assumptions()) {
|
|
if (!AssumeVH)
|
|
continue;
|
|
Instruction *I = cast<Instruction>(AssumeVH);
|
|
|
|
// Filter out call sites outside of the loop so we don't do a function's
|
|
// worth of work for each of its loops (and, in the common case, ephemeral
|
|
// values in the loop are likely due to @llvm.assume calls in the loop).
|
|
if (!L->contains(I->getParent()))
|
|
continue;
|
|
|
|
if (EphValues.insert(I).second)
|
|
appendSpeculatableOperands(I, Visited, Worklist);
|
|
}
|
|
|
|
completeEphemeralValues(Visited, Worklist, EphValues);
|
|
}
|
|
|
|
void CodeMetrics::collectEphemeralValues(
|
|
const Function *F, AssumptionCache *AC,
|
|
SmallPtrSetImpl<const Value *> &EphValues) {
|
|
SmallPtrSet<const Value *, 32> Visited;
|
|
SmallVector<const Value *, 16> Worklist;
|
|
|
|
for (auto &AssumeVH : AC->assumptions()) {
|
|
if (!AssumeVH)
|
|
continue;
|
|
Instruction *I = cast<Instruction>(AssumeVH);
|
|
assert(I->getParent()->getParent() == F &&
|
|
"Found assumption for the wrong function!");
|
|
|
|
if (EphValues.insert(I).second)
|
|
appendSpeculatableOperands(I, Visited, Worklist);
|
|
}
|
|
|
|
completeEphemeralValues(Visited, Worklist, EphValues);
|
|
}
|
|
|
|
static bool extendsConvergenceOutsideLoop(const Instruction &I, const Loop *L) {
|
|
if (!L)
|
|
return false;
|
|
if (!isa<ConvergenceControlInst>(I))
|
|
return false;
|
|
for (const auto *U : I.users()) {
|
|
if (!L->contains(cast<Instruction>(U)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Fill in the current structure with information gleaned from the specified
|
|
/// block.
|
|
void CodeMetrics::analyzeBasicBlock(
|
|
const BasicBlock *BB, const TargetTransformInfo &TTI,
|
|
const SmallPtrSetImpl<const Value *> &EphValues, bool PrepareForLTO,
|
|
const Loop *L) {
|
|
++NumBlocks;
|
|
InstructionCost NumInstsBeforeThisBB = NumInsts;
|
|
for (const Instruction &I : *BB) {
|
|
// Skip ephemeral values.
|
|
if (EphValues.count(&I))
|
|
continue;
|
|
|
|
// Special handling for calls.
|
|
if (const auto *Call = dyn_cast<CallBase>(&I)) {
|
|
if (const Function *F = Call->getCalledFunction()) {
|
|
bool IsLoweredToCall = TTI.isLoweredToCall(F);
|
|
// If a function is both internal and has a single use, then it is
|
|
// extremely likely to get inlined in the future (it was probably
|
|
// exposed by an interleaved devirtualization pass).
|
|
// When preparing for LTO, liberally consider calls as inline
|
|
// candidates.
|
|
if (!Call->isNoInline() && IsLoweredToCall &&
|
|
((F->hasInternalLinkage() && F->hasOneLiveUse()) ||
|
|
PrepareForLTO)) {
|
|
++NumInlineCandidates;
|
|
}
|
|
|
|
// If this call is to function itself, then the function is recursive.
|
|
// Inlining it into other functions is a bad idea, because this is
|
|
// basically just a form of loop peeling, and our metrics aren't useful
|
|
// for that case.
|
|
if (F == BB->getParent())
|
|
isRecursive = true;
|
|
|
|
if (IsLoweredToCall)
|
|
++NumCalls;
|
|
} else {
|
|
// We don't want inline asm to count as a call - that would prevent loop
|
|
// unrolling. The argument setup cost is still real, though.
|
|
if (!Call->isInlineAsm())
|
|
++NumCalls;
|
|
}
|
|
}
|
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
|
|
if (!AI->isStaticAlloca())
|
|
this->usesDynamicAlloca = true;
|
|
}
|
|
|
|
if (isa<ExtractElementInst>(I) || I.getType()->isVectorTy())
|
|
++NumVectorInsts;
|
|
|
|
if (I.getType()->isTokenTy() && !isa<ConvergenceControlInst>(I) &&
|
|
I.isUsedOutsideOfBlock(BB)) {
|
|
LLVM_DEBUG(dbgs() << I
|
|
<< "\n Cannot duplicate a token value used outside "
|
|
"the current block (except convergence control).\n");
|
|
notDuplicatable = true;
|
|
}
|
|
|
|
if (const CallBase *CB = dyn_cast<CallBase>(&I)) {
|
|
if (CB->cannotDuplicate())
|
|
notDuplicatable = true;
|
|
// Compute a meet over the visited blocks for the following partial order:
|
|
//
|
|
// None -> { Controlled, ExtendedLoop, Uncontrolled}
|
|
// Controlled -> ExtendedLoop
|
|
if (Convergence <= ConvergenceKind::Controlled && CB->isConvergent()) {
|
|
if (isa<ConvergenceControlInst>(CB) ||
|
|
CB->getConvergenceControlToken()) {
|
|
assert(Convergence != ConvergenceKind::Uncontrolled);
|
|
LLVM_DEBUG(dbgs() << "Found controlled convergence:\n" << I << "\n");
|
|
if (extendsConvergenceOutsideLoop(I, L))
|
|
Convergence = ConvergenceKind::ExtendedLoop;
|
|
else {
|
|
assert(Convergence != ConvergenceKind::ExtendedLoop);
|
|
Convergence = ConvergenceKind::Controlled;
|
|
}
|
|
} else {
|
|
assert(Convergence == ConvergenceKind::None);
|
|
Convergence = ConvergenceKind::Uncontrolled;
|
|
}
|
|
}
|
|
}
|
|
|
|
NumInsts += TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
|
|
}
|
|
|
|
if (isa<ReturnInst>(BB->getTerminator()))
|
|
++NumRets;
|
|
|
|
// We never want to inline functions that contain an indirectbr. This is
|
|
// incorrect because all the blockaddress's (in static global initializers
|
|
// for example) would be referring to the original function, and this indirect
|
|
// jump would jump from the inlined copy of the function into the original
|
|
// function which is extremely undefined behavior.
|
|
// FIXME: This logic isn't really right; we can safely inline functions
|
|
// with indirectbr's as long as no other function or global references the
|
|
// blockaddress of a block within the current function. And as a QOI issue,
|
|
// if someone is using a blockaddress without an indirectbr, and that
|
|
// reference somehow ends up in another function or global, we probably
|
|
// don't want to inline this function.
|
|
notDuplicatable |= isa<IndirectBrInst>(BB->getTerminator());
|
|
|
|
// Remember NumInsts for this BB.
|
|
InstructionCost NumInstsThisBB = NumInsts - NumInstsBeforeThisBB;
|
|
NumBBInsts[BB] = NumInstsThisBB;
|
|
}
|