
See https://discourse.llvm.org/t/rfc-keep-globalvalue-guids-stable/84801 for context. This is a non-functional change which just changes the interface of GlobalValue, in preparation for future functional changes. This part touches a fair few users, so is split out for ease of review. Future changes to the GlobalValue implementation can then be focused purely on that class. This does the following: * Rename GlobalValue::getGUID(StringRef) to getGUIDAssumingExternalLinkage. This is simply making explicit at the callsite what is currently implicit. * Where possible, migrate users to directly calling getGUID on a GlobalValue instance. * Otherwise, where possible, have them call the newly renamed getGUIDAssumingExternalLinkage, to make the assumption explicit. There are a few cases where neither of the above are possible, as the caller saves and reconstructs the necessary information to compute the GUID themselves. We want to migrate these callers eventually, but for this first step we leave them be.
757 lines
27 KiB
C++
757 lines
27 KiB
C++
//===- CtxProfAnalysis.cpp - contextual profile analysis ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the contextual profile analysis, which maintains contextual
|
|
// profiling info through IPO passes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/CtxProfAnalysis.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/IR/Analysis.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/ProfileData/PGOCtxProfReader.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include <deque>
|
|
#include <memory>
|
|
|
|
#define DEBUG_TYPE "ctx_prof"
|
|
|
|
using namespace llvm;
|
|
cl::opt<std::string>
|
|
UseCtxProfile("use-ctx-profile", cl::init(""), cl::Hidden,
|
|
cl::desc("Use the specified contextual profile file"));
|
|
|
|
static cl::opt<CtxProfAnalysisPrinterPass::PrintMode> PrintLevel(
|
|
"ctx-profile-printer-level",
|
|
cl::init(CtxProfAnalysisPrinterPass::PrintMode::YAML), cl::Hidden,
|
|
cl::values(clEnumValN(CtxProfAnalysisPrinterPass::PrintMode::Everything,
|
|
"everything", "print everything - most verbose"),
|
|
clEnumValN(CtxProfAnalysisPrinterPass::PrintMode::YAML, "yaml",
|
|
"just the yaml representation of the profile")),
|
|
cl::desc("Verbosity level of the contextual profile printer pass."));
|
|
|
|
static cl::opt<bool> ForceIsInSpecializedModule(
|
|
"ctx-profile-force-is-specialized", cl::init(false),
|
|
cl::desc("Treat the given module as-if it were containing the "
|
|
"post-thinlink module containing the root"));
|
|
|
|
const char *AssignGUIDPass::GUIDMetadataName = "guid";
|
|
|
|
namespace llvm {
|
|
class ProfileAnnotatorImpl final {
|
|
friend class ProfileAnnotator;
|
|
class BBInfo;
|
|
struct EdgeInfo {
|
|
BBInfo *const Src;
|
|
BBInfo *const Dest;
|
|
std::optional<uint64_t> Count;
|
|
|
|
explicit EdgeInfo(BBInfo &Src, BBInfo &Dest) : Src(&Src), Dest(&Dest) {}
|
|
};
|
|
|
|
class BBInfo {
|
|
std::optional<uint64_t> Count;
|
|
// OutEdges is dimensioned to match the number of terminator operands.
|
|
// Entries in the vector match the index in the terminator operand list. In
|
|
// some cases - see `shouldExcludeEdge` and its implementation - an entry
|
|
// will be nullptr.
|
|
// InEdges doesn't have the above constraint.
|
|
SmallVector<EdgeInfo *> OutEdges;
|
|
SmallVector<EdgeInfo *> InEdges;
|
|
size_t UnknownCountOutEdges = 0;
|
|
size_t UnknownCountInEdges = 0;
|
|
|
|
// Pass AssumeAllKnown when we try to propagate counts from edges to BBs -
|
|
// because all the edge counters must be known.
|
|
// Return std::nullopt if there were no edges to sum. The user can decide
|
|
// how to interpret that.
|
|
std::optional<uint64_t> getEdgeSum(const SmallVector<EdgeInfo *> &Edges,
|
|
bool AssumeAllKnown) const {
|
|
std::optional<uint64_t> Sum;
|
|
for (const auto *E : Edges) {
|
|
// `Edges` may be `OutEdges`, case in which `E` could be nullptr.
|
|
if (E) {
|
|
if (!Sum.has_value())
|
|
Sum = 0;
|
|
*Sum += (AssumeAllKnown ? *E->Count : E->Count.value_or(0U));
|
|
}
|
|
}
|
|
return Sum;
|
|
}
|
|
|
|
bool computeCountFrom(const SmallVector<EdgeInfo *> &Edges) {
|
|
assert(!Count.has_value());
|
|
Count = getEdgeSum(Edges, true);
|
|
return Count.has_value();
|
|
}
|
|
|
|
void setSingleUnknownEdgeCount(SmallVector<EdgeInfo *> &Edges) {
|
|
uint64_t KnownSum = getEdgeSum(Edges, false).value_or(0U);
|
|
uint64_t EdgeVal = *Count > KnownSum ? *Count - KnownSum : 0U;
|
|
EdgeInfo *E = nullptr;
|
|
for (auto *I : Edges)
|
|
if (I && !I->Count.has_value()) {
|
|
E = I;
|
|
#ifdef NDEBUG
|
|
break;
|
|
#else
|
|
assert((!E || E == I) &&
|
|
"Expected exactly one edge to have an unknown count, "
|
|
"found a second one");
|
|
continue;
|
|
#endif
|
|
}
|
|
assert(E && "Expected exactly one edge to have an unknown count");
|
|
assert(!E->Count.has_value());
|
|
E->Count = EdgeVal;
|
|
assert(E->Src->UnknownCountOutEdges > 0);
|
|
assert(E->Dest->UnknownCountInEdges > 0);
|
|
--E->Src->UnknownCountOutEdges;
|
|
--E->Dest->UnknownCountInEdges;
|
|
}
|
|
|
|
public:
|
|
BBInfo(size_t NumInEdges, size_t NumOutEdges, std::optional<uint64_t> Count)
|
|
: Count(Count) {
|
|
// For in edges, we just want to pre-allocate enough space, since we know
|
|
// it at this stage. For out edges, we will insert edges at the indices
|
|
// corresponding to positions in this BB's terminator instruction, so we
|
|
// construct a default (nullptr values)-initialized vector. A nullptr edge
|
|
// corresponds to those that are excluded (see shouldExcludeEdge).
|
|
InEdges.reserve(NumInEdges);
|
|
OutEdges.resize(NumOutEdges);
|
|
}
|
|
|
|
bool tryTakeCountFromKnownOutEdges(const BasicBlock &BB) {
|
|
if (!UnknownCountOutEdges) {
|
|
return computeCountFrom(OutEdges);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool tryTakeCountFromKnownInEdges(const BasicBlock &BB) {
|
|
if (!UnknownCountInEdges) {
|
|
return computeCountFrom(InEdges);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void addInEdge(EdgeInfo &Info) {
|
|
InEdges.push_back(&Info);
|
|
++UnknownCountInEdges;
|
|
}
|
|
|
|
// For the out edges, we care about the position we place them in, which is
|
|
// the position in terminator instruction's list (at construction). Later,
|
|
// we build branch_weights metadata with edge frequency values matching
|
|
// these positions.
|
|
void addOutEdge(size_t Index, EdgeInfo &Info) {
|
|
OutEdges[Index] = &Info;
|
|
++UnknownCountOutEdges;
|
|
}
|
|
|
|
bool hasCount() const { return Count.has_value(); }
|
|
|
|
uint64_t getCount() const { return *Count; }
|
|
|
|
bool trySetSingleUnknownInEdgeCount() {
|
|
if (UnknownCountInEdges == 1) {
|
|
setSingleUnknownEdgeCount(InEdges);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool trySetSingleUnknownOutEdgeCount() {
|
|
if (UnknownCountOutEdges == 1) {
|
|
setSingleUnknownEdgeCount(OutEdges);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
size_t getNumOutEdges() const { return OutEdges.size(); }
|
|
|
|
uint64_t getEdgeCount(size_t Index) const {
|
|
if (auto *E = OutEdges[Index])
|
|
return *E->Count;
|
|
return 0U;
|
|
}
|
|
};
|
|
|
|
const Function &F;
|
|
ArrayRef<uint64_t> Counters;
|
|
// To be accessed through getBBInfo() after construction.
|
|
std::map<const BasicBlock *, BBInfo> BBInfos;
|
|
std::vector<EdgeInfo> EdgeInfos;
|
|
|
|
// The only criteria for exclusion is faux suspend -> exit edges in presplit
|
|
// coroutines. The API serves for readability, currently.
|
|
bool shouldExcludeEdge(const BasicBlock &Src, const BasicBlock &Dest) const {
|
|
return llvm::isPresplitCoroSuspendExitEdge(Src, Dest);
|
|
}
|
|
|
|
BBInfo &getBBInfo(const BasicBlock &BB) { return BBInfos.find(&BB)->second; }
|
|
|
|
const BBInfo &getBBInfo(const BasicBlock &BB) const {
|
|
return BBInfos.find(&BB)->second;
|
|
}
|
|
|
|
// validation function after we propagate the counters: all BBs and edges'
|
|
// counters must have a value.
|
|
bool allCountersAreAssigned() const {
|
|
for (const auto &BBInfo : BBInfos)
|
|
if (!BBInfo.second.hasCount())
|
|
return false;
|
|
for (const auto &EdgeInfo : EdgeInfos)
|
|
if (!EdgeInfo.Count.has_value())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Check that all paths from the entry basic block that use edges with
|
|
/// non-zero counts arrive at a basic block with no successors (i.e. "exit")
|
|
bool allTakenPathsExit() const {
|
|
std::deque<const BasicBlock *> Worklist;
|
|
DenseSet<const BasicBlock *> Visited;
|
|
Worklist.push_back(&F.getEntryBlock());
|
|
bool HitExit = false;
|
|
while (!Worklist.empty()) {
|
|
const auto *BB = Worklist.front();
|
|
Worklist.pop_front();
|
|
if (!Visited.insert(BB).second)
|
|
continue;
|
|
if (succ_size(BB) == 0) {
|
|
if (isa<UnreachableInst>(BB->getTerminator()))
|
|
return false;
|
|
HitExit = true;
|
|
continue;
|
|
}
|
|
if (succ_size(BB) == 1) {
|
|
Worklist.push_back(BB->getUniqueSuccessor());
|
|
continue;
|
|
}
|
|
const auto &BBInfo = getBBInfo(*BB);
|
|
bool HasAWayOut = false;
|
|
for (auto I = 0U; I < BB->getTerminator()->getNumSuccessors(); ++I) {
|
|
const auto *Succ = BB->getTerminator()->getSuccessor(I);
|
|
if (!shouldExcludeEdge(*BB, *Succ)) {
|
|
if (BBInfo.getEdgeCount(I) > 0) {
|
|
HasAWayOut = true;
|
|
Worklist.push_back(Succ);
|
|
}
|
|
}
|
|
}
|
|
if (!HasAWayOut)
|
|
return false;
|
|
}
|
|
return HitExit;
|
|
}
|
|
|
|
bool allNonColdSelectsHaveProfile() const {
|
|
for (const auto &BB : F) {
|
|
if (getBBInfo(BB).getCount() > 0) {
|
|
for (const auto &I : BB) {
|
|
if (const auto *SI = dyn_cast<SelectInst>(&I)) {
|
|
if (const auto *Inst = CtxProfAnalysis::getSelectInstrumentation(
|
|
*const_cast<SelectInst *>(SI))) {
|
|
auto Index = Inst->getIndex()->getZExtValue();
|
|
assert(Index < Counters.size());
|
|
if (Counters[Index] == 0)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// This is an adaptation of PGOUseFunc::populateCounters.
|
|
// FIXME(mtrofin): look into factoring the code to share one implementation.
|
|
void propagateCounterValues() {
|
|
bool KeepGoing = true;
|
|
while (KeepGoing) {
|
|
KeepGoing = false;
|
|
for (const auto &BB : F) {
|
|
auto &Info = getBBInfo(BB);
|
|
if (!Info.hasCount())
|
|
KeepGoing |= Info.tryTakeCountFromKnownOutEdges(BB) ||
|
|
Info.tryTakeCountFromKnownInEdges(BB);
|
|
if (Info.hasCount()) {
|
|
KeepGoing |= Info.trySetSingleUnknownOutEdgeCount();
|
|
KeepGoing |= Info.trySetSingleUnknownInEdgeCount();
|
|
}
|
|
}
|
|
}
|
|
assert(allCountersAreAssigned() &&
|
|
"[ctx-prof] Expected all counters have been assigned.");
|
|
assert(allTakenPathsExit() &&
|
|
"[ctx-prof] Encountered a BB with more than one successor, where "
|
|
"all outgoing edges have a 0 count. This occurs in non-exiting "
|
|
"functions (message pumps, usually) which are not supported in the "
|
|
"contextual profiling case");
|
|
assert(allNonColdSelectsHaveProfile() &&
|
|
"[ctx-prof] All non-cold select instructions were expected to have "
|
|
"a profile.");
|
|
}
|
|
|
|
public:
|
|
ProfileAnnotatorImpl(const Function &F, ArrayRef<uint64_t> Counters)
|
|
: F(F), Counters(Counters) {
|
|
assert(!F.isDeclaration());
|
|
assert(!Counters.empty());
|
|
size_t NrEdges = 0;
|
|
for (const auto &BB : F) {
|
|
std::optional<uint64_t> Count;
|
|
if (auto *Ins = CtxProfAnalysis::getBBInstrumentation(
|
|
const_cast<BasicBlock &>(BB))) {
|
|
auto Index = Ins->getIndex()->getZExtValue();
|
|
assert(Index < Counters.size() &&
|
|
"The index must be inside the counters vector by construction - "
|
|
"tripping this assertion indicates a bug in how the contextual "
|
|
"profile is managed by IPO transforms");
|
|
(void)Index;
|
|
Count = Counters[Ins->getIndex()->getZExtValue()];
|
|
} else if (isa<UnreachableInst>(BB.getTerminator())) {
|
|
// The program presumably didn't crash.
|
|
Count = 0;
|
|
}
|
|
auto [It, Ins] =
|
|
BBInfos.insert({&BB, {pred_size(&BB), succ_size(&BB), Count}});
|
|
(void)Ins;
|
|
assert(Ins && "We iterate through the function's BBs, no reason to "
|
|
"insert one more than once");
|
|
NrEdges += llvm::count_if(successors(&BB), [&](const auto *Succ) {
|
|
return !shouldExcludeEdge(BB, *Succ);
|
|
});
|
|
}
|
|
// Pre-allocate the vector, we want references to its contents to be stable.
|
|
EdgeInfos.reserve(NrEdges);
|
|
for (const auto &BB : F) {
|
|
auto &Info = getBBInfo(BB);
|
|
for (auto I = 0U; I < BB.getTerminator()->getNumSuccessors(); ++I) {
|
|
const auto *Succ = BB.getTerminator()->getSuccessor(I);
|
|
if (!shouldExcludeEdge(BB, *Succ)) {
|
|
auto &EI = EdgeInfos.emplace_back(getBBInfo(BB), getBBInfo(*Succ));
|
|
Info.addOutEdge(I, EI);
|
|
getBBInfo(*Succ).addInEdge(EI);
|
|
}
|
|
}
|
|
}
|
|
assert(EdgeInfos.capacity() == NrEdges &&
|
|
"The capacity of EdgeInfos should have stayed unchanged it was "
|
|
"populated, because we need pointers to its contents to be stable");
|
|
propagateCounterValues();
|
|
}
|
|
|
|
uint64_t getBBCount(const BasicBlock &BB) { return getBBInfo(BB).getCount(); }
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
ProfileAnnotator::ProfileAnnotator(const Function &F,
|
|
ArrayRef<uint64_t> RawCounters)
|
|
: PImpl(std::make_unique<ProfileAnnotatorImpl>(F, RawCounters)) {}
|
|
|
|
ProfileAnnotator::~ProfileAnnotator() = default;
|
|
|
|
uint64_t ProfileAnnotator::getBBCount(const BasicBlock &BB) const {
|
|
return PImpl->getBBCount(BB);
|
|
}
|
|
|
|
bool ProfileAnnotator::getSelectInstrProfile(SelectInst &SI,
|
|
uint64_t &TrueCount,
|
|
uint64_t &FalseCount) const {
|
|
const auto &BBInfo = PImpl->getBBInfo(*SI.getParent());
|
|
TrueCount = FalseCount = 0;
|
|
if (BBInfo.getCount() == 0)
|
|
return false;
|
|
|
|
auto *Step = CtxProfAnalysis::getSelectInstrumentation(SI);
|
|
if (!Step)
|
|
return false;
|
|
auto Index = Step->getIndex()->getZExtValue();
|
|
assert(Index < PImpl->Counters.size() &&
|
|
"The index of the step instruction must be inside the "
|
|
"counters vector by "
|
|
"construction - tripping this assertion indicates a bug in "
|
|
"how the contextual profile is managed by IPO transforms");
|
|
auto TotalCount = BBInfo.getCount();
|
|
TrueCount = PImpl->Counters[Index];
|
|
FalseCount = (TotalCount > TrueCount ? TotalCount - TrueCount : 0U);
|
|
return true;
|
|
}
|
|
|
|
bool ProfileAnnotator::getOutgoingBranchWeights(
|
|
BasicBlock &BB, SmallVectorImpl<uint64_t> &Profile,
|
|
uint64_t &MaxCount) const {
|
|
Profile.clear();
|
|
|
|
if (succ_size(&BB) < 2)
|
|
return false;
|
|
|
|
auto *Term = BB.getTerminator();
|
|
Profile.resize(Term->getNumSuccessors());
|
|
|
|
const auto &BBInfo = PImpl->getBBInfo(BB);
|
|
MaxCount = 0;
|
|
for (unsigned SuccIdx = 0, Size = BBInfo.getNumOutEdges(); SuccIdx < Size;
|
|
++SuccIdx) {
|
|
uint64_t EdgeCount = BBInfo.getEdgeCount(SuccIdx);
|
|
if (EdgeCount > MaxCount)
|
|
MaxCount = EdgeCount;
|
|
Profile[SuccIdx] = EdgeCount;
|
|
}
|
|
return MaxCount > 0;
|
|
}
|
|
|
|
PreservedAnalyses AssignGUIDPass::run(Module &M, ModuleAnalysisManager &MAM) {
|
|
for (auto &F : M.functions()) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
if (F.getMetadata(GUIDMetadataName))
|
|
continue;
|
|
const GlobalValue::GUID GUID = F.getGUID();
|
|
F.setMetadata(GUIDMetadataName,
|
|
MDNode::get(M.getContext(),
|
|
{ConstantAsMetadata::get(ConstantInt::get(
|
|
Type::getInt64Ty(M.getContext()), GUID))}));
|
|
}
|
|
return PreservedAnalyses::none();
|
|
}
|
|
|
|
GlobalValue::GUID AssignGUIDPass::getGUID(const Function &F) {
|
|
if (F.isDeclaration()) {
|
|
assert(GlobalValue::isExternalLinkage(F.getLinkage()));
|
|
return F.getGUID();
|
|
}
|
|
auto *MD = F.getMetadata(GUIDMetadataName);
|
|
assert(MD && "guid not found for defined function");
|
|
return cast<ConstantInt>(cast<ConstantAsMetadata>(MD->getOperand(0))
|
|
->getValue()
|
|
->stripPointerCasts())
|
|
->getZExtValue();
|
|
}
|
|
AnalysisKey CtxProfAnalysis::Key;
|
|
|
|
CtxProfAnalysis::CtxProfAnalysis(std::optional<StringRef> Profile)
|
|
: Profile([&]() -> std::optional<StringRef> {
|
|
if (Profile)
|
|
return *Profile;
|
|
if (UseCtxProfile.getNumOccurrences())
|
|
return UseCtxProfile;
|
|
return std::nullopt;
|
|
}()) {}
|
|
|
|
PGOContextualProfile CtxProfAnalysis::run(Module &M,
|
|
ModuleAnalysisManager &MAM) {
|
|
if (!Profile)
|
|
return {};
|
|
ErrorOr<std::unique_ptr<MemoryBuffer>> MB = MemoryBuffer::getFile(*Profile);
|
|
if (auto EC = MB.getError()) {
|
|
M.getContext().emitError("could not open contextual profile file: " +
|
|
EC.message());
|
|
return {};
|
|
}
|
|
PGOCtxProfileReader Reader(MB.get()->getBuffer());
|
|
auto MaybeProfiles = Reader.loadProfiles();
|
|
if (!MaybeProfiles) {
|
|
M.getContext().emitError("contextual profile file is invalid: " +
|
|
toString(MaybeProfiles.takeError()));
|
|
return {};
|
|
}
|
|
|
|
// FIXME: We should drive this from ThinLTO, but for the time being, use the
|
|
// module name as indicator.
|
|
// We want to *only* keep the contextual profiles in modules that capture
|
|
// context trees. That allows us to compute specific PSIs, for example.
|
|
auto DetermineRootsInModule = [&M]() -> const DenseSet<GlobalValue::GUID> {
|
|
DenseSet<GlobalValue::GUID> ProfileRootsInModule;
|
|
auto ModName = M.getName();
|
|
auto Filename = sys::path::filename(ModName);
|
|
// Drop the file extension.
|
|
Filename = Filename.substr(0, Filename.find_last_of('.'));
|
|
// See if it parses
|
|
APInt Guid;
|
|
// getAsInteger returns true if there are more chars to read other than the
|
|
// integer. So the "false" test is what we want.
|
|
if (!Filename.getAsInteger(0, Guid))
|
|
ProfileRootsInModule.insert(Guid.getZExtValue());
|
|
return ProfileRootsInModule;
|
|
};
|
|
const auto ProfileRootsInModule = DetermineRootsInModule();
|
|
PGOContextualProfile Result;
|
|
|
|
// the logic from here on allows for modules that contain - by design - more
|
|
// than one root. We currently don't support that, because the determination
|
|
// happens based on the module name matching the root guid, but the logic can
|
|
// avoid assuming that.
|
|
if (!ProfileRootsInModule.empty()) {
|
|
Result.IsInSpecializedModule = true;
|
|
// Trim first the roots that aren't in this module.
|
|
for (auto &[RootGuid, _] :
|
|
llvm::make_early_inc_range(MaybeProfiles->Contexts))
|
|
if (!ProfileRootsInModule.contains(RootGuid))
|
|
MaybeProfiles->Contexts.erase(RootGuid);
|
|
// we can also drop the flat profiles
|
|
MaybeProfiles->FlatProfiles.clear();
|
|
}
|
|
|
|
for (const auto &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
auto GUID = AssignGUIDPass::getGUID(F);
|
|
assert(GUID && "guid not found for defined function");
|
|
const auto &Entry = F.begin();
|
|
uint32_t MaxCounters = 0; // we expect at least a counter.
|
|
for (const auto &I : *Entry)
|
|
if (auto *C = dyn_cast<InstrProfIncrementInst>(&I)) {
|
|
MaxCounters =
|
|
static_cast<uint32_t>(C->getNumCounters()->getZExtValue());
|
|
break;
|
|
}
|
|
if (!MaxCounters)
|
|
continue;
|
|
uint32_t MaxCallsites = 0;
|
|
for (const auto &BB : F)
|
|
for (const auto &I : BB)
|
|
if (auto *C = dyn_cast<InstrProfCallsite>(&I)) {
|
|
MaxCallsites =
|
|
static_cast<uint32_t>(C->getNumCounters()->getZExtValue());
|
|
break;
|
|
}
|
|
auto [It, Ins] = Result.FuncInfo.insert(
|
|
{GUID, PGOContextualProfile::FunctionInfo(F.getName())});
|
|
(void)Ins;
|
|
assert(Ins);
|
|
It->second.NextCallsiteIndex = MaxCallsites;
|
|
It->second.NextCounterIndex = MaxCounters;
|
|
}
|
|
// If we made it this far, the Result is valid - which we mark by setting
|
|
// .Profiles.
|
|
Result.Profiles = std::move(*MaybeProfiles);
|
|
Result.initIndex();
|
|
return Result;
|
|
}
|
|
|
|
GlobalValue::GUID
|
|
PGOContextualProfile::getDefinedFunctionGUID(const Function &F) const {
|
|
if (auto It = FuncInfo.find(AssignGUIDPass::getGUID(F)); It != FuncInfo.end())
|
|
return It->first;
|
|
return 0;
|
|
}
|
|
|
|
CtxProfAnalysisPrinterPass::CtxProfAnalysisPrinterPass(raw_ostream &OS)
|
|
: OS(OS), Mode(PrintLevel) {}
|
|
|
|
PreservedAnalyses CtxProfAnalysisPrinterPass::run(Module &M,
|
|
ModuleAnalysisManager &MAM) {
|
|
CtxProfAnalysis::Result &C = MAM.getResult<CtxProfAnalysis>(M);
|
|
if (C.contexts().empty()) {
|
|
OS << "No contextual profile was provided.\n";
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
if (Mode == PrintMode::Everything) {
|
|
OS << "Function Info:\n";
|
|
for (const auto &[Guid, FuncInfo] : C.FuncInfo)
|
|
OS << Guid << " : " << FuncInfo.Name
|
|
<< ". MaxCounterID: " << FuncInfo.NextCounterIndex
|
|
<< ". MaxCallsiteID: " << FuncInfo.NextCallsiteIndex << "\n";
|
|
}
|
|
|
|
if (Mode == PrintMode::Everything)
|
|
OS << "\nCurrent Profile:\n";
|
|
convertCtxProfToYaml(OS, C.profiles());
|
|
OS << "\n";
|
|
if (Mode == PrintMode::YAML)
|
|
return PreservedAnalyses::all();
|
|
|
|
OS << "\nFlat Profile:\n";
|
|
auto Flat = C.flatten();
|
|
for (const auto &[Guid, Counters] : Flat) {
|
|
OS << Guid << " : ";
|
|
for (auto V : Counters)
|
|
OS << V << " ";
|
|
OS << "\n";
|
|
}
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
InstrProfCallsite *CtxProfAnalysis::getCallsiteInstrumentation(CallBase &CB) {
|
|
if (!InstrProfCallsite::canInstrumentCallsite(CB))
|
|
return nullptr;
|
|
for (auto *Prev = CB.getPrevNode(); Prev; Prev = Prev->getPrevNode()) {
|
|
if (auto *IPC = dyn_cast<InstrProfCallsite>(Prev))
|
|
return IPC;
|
|
assert(!isa<CallBase>(Prev) &&
|
|
"didn't expect to find another call, that's not the callsite "
|
|
"instrumentation, before an instrumentable callsite");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
InstrProfIncrementInst *CtxProfAnalysis::getBBInstrumentation(BasicBlock &BB) {
|
|
for (auto &I : BB)
|
|
if (auto *Incr = dyn_cast<InstrProfIncrementInst>(&I))
|
|
if (!isa<InstrProfIncrementInstStep>(&I))
|
|
return Incr;
|
|
return nullptr;
|
|
}
|
|
|
|
InstrProfIncrementInstStep *
|
|
CtxProfAnalysis::getSelectInstrumentation(SelectInst &SI) {
|
|
Instruction *Prev = &SI;
|
|
while ((Prev = Prev->getPrevNode()))
|
|
if (auto *Step = dyn_cast<InstrProfIncrementInstStep>(Prev))
|
|
return Step;
|
|
return nullptr;
|
|
}
|
|
|
|
template <class ProfTy>
|
|
static void preorderVisitOneRoot(ProfTy &Profile,
|
|
function_ref<void(ProfTy &)> Visitor) {
|
|
std::function<void(ProfTy &)> Traverser = [&](auto &Ctx) {
|
|
Visitor(Ctx);
|
|
for (auto &[_, SubCtxSet] : Ctx.callsites())
|
|
for (auto &[__, Subctx] : SubCtxSet)
|
|
Traverser(Subctx);
|
|
};
|
|
Traverser(Profile);
|
|
}
|
|
|
|
template <class ProfilesTy, class ProfTy>
|
|
static void preorderVisit(ProfilesTy &Profiles,
|
|
function_ref<void(ProfTy &)> Visitor) {
|
|
for (auto &[_, P] : Profiles)
|
|
preorderVisitOneRoot<ProfTy>(P, Visitor);
|
|
}
|
|
|
|
void PGOContextualProfile::initIndex() {
|
|
// Initialize the head of the index list for each function. We don't need it
|
|
// after this point.
|
|
DenseMap<GlobalValue::GUID, PGOCtxProfContext *> InsertionPoints;
|
|
for (auto &[Guid, FI] : FuncInfo)
|
|
InsertionPoints[Guid] = &FI.Index;
|
|
preorderVisit<PGOCtxProfContext::CallTargetMapTy, PGOCtxProfContext>(
|
|
Profiles.Contexts, [&](PGOCtxProfContext &Ctx) {
|
|
auto InsertIt = InsertionPoints.find(Ctx.guid());
|
|
if (InsertIt == InsertionPoints.end())
|
|
return;
|
|
// Insert at the end of the list. Since we traverse in preorder, it
|
|
// means that when we iterate the list from the beginning, we'd
|
|
// encounter the contexts in the order we would have, should we have
|
|
// performed a full preorder traversal.
|
|
InsertIt->second->Next = &Ctx;
|
|
Ctx.Previous = InsertIt->second;
|
|
InsertIt->second = &Ctx;
|
|
});
|
|
}
|
|
|
|
bool PGOContextualProfile::isInSpecializedModule() const {
|
|
return ForceIsInSpecializedModule.getNumOccurrences() > 0
|
|
? ForceIsInSpecializedModule
|
|
: IsInSpecializedModule;
|
|
}
|
|
|
|
void PGOContextualProfile::update(Visitor V, const Function &F) {
|
|
assert(isFunctionKnown(F));
|
|
GlobalValue::GUID G = getDefinedFunctionGUID(F);
|
|
for (auto *Node = FuncInfo.find(G)->second.Index.Next; Node;
|
|
Node = Node->Next)
|
|
V(*reinterpret_cast<PGOCtxProfContext *>(Node));
|
|
}
|
|
|
|
void PGOContextualProfile::visit(ConstVisitor V, const Function *F) const {
|
|
if (!F)
|
|
return preorderVisit<const PGOCtxProfContext::CallTargetMapTy,
|
|
const PGOCtxProfContext>(Profiles.Contexts, V);
|
|
assert(isFunctionKnown(*F));
|
|
GlobalValue::GUID G = getDefinedFunctionGUID(*F);
|
|
for (const auto *Node = FuncInfo.find(G)->second.Index.Next; Node;
|
|
Node = Node->Next)
|
|
V(*reinterpret_cast<const PGOCtxProfContext *>(Node));
|
|
}
|
|
|
|
const CtxProfFlatProfile PGOContextualProfile::flatten() const {
|
|
CtxProfFlatProfile Flat;
|
|
auto Accummulate = [](SmallVectorImpl<uint64_t> &Into,
|
|
const SmallVectorImpl<uint64_t> &From,
|
|
uint64_t SamplingRate) {
|
|
if (Into.empty())
|
|
Into.resize(From.size());
|
|
assert(Into.size() == From.size() &&
|
|
"All contexts corresponding to a function should have the exact "
|
|
"same number of counters.");
|
|
for (size_t I = 0, E = Into.size(); I < E; ++I)
|
|
Into[I] += From[I] * SamplingRate;
|
|
};
|
|
|
|
for (const auto &[_, CtxRoot] : Profiles.Contexts) {
|
|
const uint64_t SamplingFactor = CtxRoot.getTotalRootEntryCount();
|
|
preorderVisitOneRoot<const PGOCtxProfContext>(
|
|
CtxRoot, [&](const PGOCtxProfContext &Ctx) {
|
|
Accummulate(Flat[Ctx.guid()], Ctx.counters(), SamplingFactor);
|
|
});
|
|
|
|
for (const auto &[G, Unh] : CtxRoot.getUnhandled())
|
|
Accummulate(Flat[G], Unh, SamplingFactor);
|
|
}
|
|
// We don't sample "Flat" currently, so sampling rate is 1.
|
|
for (const auto &[G, FC] : Profiles.FlatProfiles)
|
|
Accummulate(Flat[G], FC, /*SamplingRate=*/1);
|
|
return Flat;
|
|
}
|
|
|
|
const CtxProfFlatIndirectCallProfile
|
|
PGOContextualProfile::flattenVirtCalls() const {
|
|
CtxProfFlatIndirectCallProfile Ret;
|
|
for (const auto &[_, CtxRoot] : Profiles.Contexts) {
|
|
const uint64_t TotalRootEntryCount = CtxRoot.getTotalRootEntryCount();
|
|
preorderVisitOneRoot<const PGOCtxProfContext>(
|
|
CtxRoot, [&](const PGOCtxProfContext &Ctx) {
|
|
auto &Targets = Ret[Ctx.guid()];
|
|
for (const auto &[ID, SubctxSet] : Ctx.callsites())
|
|
for (const auto &Subctx : SubctxSet)
|
|
Targets[ID][Subctx.first] +=
|
|
Subctx.second.getEntrycount() * TotalRootEntryCount;
|
|
});
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
void CtxProfAnalysis::collectIndirectCallPromotionList(
|
|
CallBase &IC, Result &Profile,
|
|
SetVector<std::pair<CallBase *, Function *>> &Candidates) {
|
|
const auto *Instr = CtxProfAnalysis::getCallsiteInstrumentation(IC);
|
|
if (!Instr)
|
|
return;
|
|
Module &M = *IC.getParent()->getModule();
|
|
const uint32_t CallID = Instr->getIndex()->getZExtValue();
|
|
Profile.visit(
|
|
[&](const PGOCtxProfContext &Ctx) {
|
|
const auto &Targets = Ctx.callsites().find(CallID);
|
|
if (Targets == Ctx.callsites().end())
|
|
return;
|
|
for (const auto &[Guid, _] : Targets->second)
|
|
if (auto Name = Profile.getFunctionName(Guid); !Name.empty())
|
|
if (auto *Target = M.getFunction(Name))
|
|
if (Target->hasFnAttribute(Attribute::AlwaysInline))
|
|
Candidates.insert({&IC, Target});
|
|
},
|
|
IC.getCaller());
|
|
}
|