llvm-project/llvm/lib/Analysis/LoopUnrollAnalyzer.cpp
Nikita Popov 69c43468d3 [LoopUnrollAnalyzer] Don't simplify signed pointer comparison
We're generally not able to simplify signed pointer comparisons
(because we don't have no-wrap flags that would permit it), so
we shouldn't pretend that we can in the cost model.

The unsigned comparison case is also not modelled correctly,
as explained in the added comment. As this is a cost model
inaccuracy at worst, I'm leaving it alone for now.
2024-08-28 12:15:12 +02:00

202 lines
6.9 KiB
C++

//===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements UnrolledInstAnalyzer class. It's used for predicting
// potential effects that loop unrolling might have, such as enabling constant
// propagation and other optimizations.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopUnrollAnalyzer.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Operator.h"
using namespace llvm;
/// Try to simplify instruction \param I using its SCEV expression.
///
/// The idea is that some AddRec expressions become constants, which then
/// could trigger folding of other instructions. However, that only happens
/// for expressions whose start value is also constant, which isn't always the
/// case. In another common and important case the start value is just some
/// address (i.e. SCEVUnknown) - in this case we compute the offset and save
/// it along with the base address instead.
bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
if (!SE.isSCEVable(I->getType()))
return false;
const SCEV *S = SE.getSCEV(I);
if (auto *SC = dyn_cast<SCEVConstant>(S)) {
SimplifiedValues[I] = SC->getValue();
return true;
}
// If we have a loop invariant computation, we only need to compute it once.
// Given that, all but the first occurance are free.
if (!IterationNumber->isZero() && SE.isLoopInvariant(S, L))
return true;
auto *AR = dyn_cast<SCEVAddRecExpr>(S);
if (!AR || AR->getLoop() != L)
return false;
const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
// Check if the AddRec expression becomes a constant.
if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
SimplifiedValues[I] = SC->getValue();
return true;
}
// Check if the offset from the base address becomes a constant.
auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
if (!Base)
return false;
std::optional<APInt> Offset =
SE.computeConstantDifference(ValueAtIteration, Base);
if (!Offset)
return false;
SimplifiedAddress Address;
Address.Base = Base->getValue();
Address.Offset = *Offset;
SimplifiedAddresses[I] = Address;
return false;
}
/// Try to simplify binary operator I.
///
/// TODO: Probably it's worth to hoist the code for estimating the
/// simplifications effects to a separate class, since we have a very similar
/// code in InlineCost already.
bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
if (!isa<Constant>(LHS))
if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
LHS = SimpleLHS;
if (!isa<Constant>(RHS))
if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
RHS = SimpleRHS;
Value *SimpleV = nullptr;
const DataLayout &DL = I.getDataLayout();
if (auto FI = dyn_cast<FPMathOperator>(&I))
SimpleV =
simplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
else
SimpleV = simplifyBinOp(I.getOpcode(), LHS, RHS, DL);
if (SimpleV) {
SimplifiedValues[&I] = SimpleV;
return true;
}
return Base::visitBinaryOperator(I);
}
/// Try to fold load I.
bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
Value *AddrOp = I.getPointerOperand();
auto AddressIt = SimplifiedAddresses.find(AddrOp);
if (AddressIt == SimplifiedAddresses.end())
return false;
auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
// We're only interested in loads that can be completely folded to a
// constant.
if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
return false;
Constant *Res =
ConstantFoldLoadFromConst(GV->getInitializer(), I.getType(),
AddressIt->second.Offset, I.getDataLayout());
if (!Res)
return false;
SimplifiedValues[&I] = Res;
return true;
}
/// Try to simplify cast instruction.
bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
Value *Op = I.getOperand(0);
if (Value *Simplified = SimplifiedValues.lookup(Op))
Op = Simplified;
// The cast can be invalid, because SimplifiedValues contains results of SCEV
// analysis, which operates on integers (and, e.g., might convert i8* null to
// i32 0).
if (CastInst::castIsValid(I.getOpcode(), Op, I.getType())) {
const DataLayout &DL = I.getDataLayout();
if (Value *V = simplifyCastInst(I.getOpcode(), Op, I.getType(), DL)) {
SimplifiedValues[&I] = V;
return true;
}
}
return Base::visitCastInst(I);
}
/// Try to simplify cmp instruction.
bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
// First try to handle simplified comparisons.
if (!isa<Constant>(LHS))
if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
LHS = SimpleLHS;
if (!isa<Constant>(RHS))
if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
RHS = SimpleRHS;
if (!isa<Constant>(LHS) && !isa<Constant>(RHS) && !I.isSigned()) {
auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
if (SimplifiedLHS != SimplifiedAddresses.end()) {
auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
if (SimplifiedRHS != SimplifiedAddresses.end()) {
SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
if (LHSAddr.Base == RHSAddr.Base) {
// FIXME: This is only correct for equality predicates. For
// unsigned predicates, this only holds if we have nowrap flags,
// which we don't track (for nuw it's valid as-is, for nusw it
// requires converting the predicated to signed). As this is used only
// for cost modelling, this is not a correctness issue.
bool Res = ICmpInst::compare(LHSAddr.Offset, RHSAddr.Offset,
I.getPredicate());
SimplifiedValues[&I] = ConstantInt::getBool(I.getType(), Res);
return true;
}
}
}
}
const DataLayout &DL = I.getDataLayout();
if (Value *V = simplifyCmpInst(I.getPredicate(), LHS, RHS, DL)) {
SimplifiedValues[&I] = V;
return true;
}
return Base::visitCmpInst(I);
}
bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
// Run base visitor first. This way we can gather some useful for later
// analysis information.
if (Base::visitPHINode(PN))
return true;
// The loop induction PHI nodes are definitionally free.
return PN.getParent() == L->getHeader();
}
bool UnrolledInstAnalyzer::visitInstruction(Instruction &I) {
return simplifyInstWithSCEV(&I);
}