Vulkan-Hpp/samples/PushConstants/PushConstants.cpp

261 lines
12 KiB
C++
Raw Normal View History

// Copyright(c) 2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// VulkanHpp Samples : PushConstants
// Use push constants in a simple shader, validate the correct value was read.
#include "../utils/geometries.hpp"
#include "../utils/math.hpp"
#include "../utils/shaders.hpp"
#include "../utils/utils.hpp"
#include "SPIRV/GlslangToSpv.h"
#include "vulkan/vulkan.hpp"
#include <iostream>
#include <thread>
static char const * AppName = "PushConstants";
static char const * EngineName = "Vulkan.hpp";
const std::string fragmentShaderText = R"(
#version 400
#extension GL_ARB_separate_shader_objects : enable
#extension GL_ARB_shading_language_420pack : enable
layout (push_constant) uniform pushBlock
{
int iFoo;
float fBar;
} pushConstantsBlock;
layout (location = 0) in vec2 inTexCoords;
layout (location = 0) out vec4 outColor;
void main()
{
vec4 green = vec4(0.0f, 1.0f, 0.0f, 1.0f);
vec4 red = vec4(1.0f, 0.0f, 0.0f, 1.0f);
// Start with passing color
vec4 resColor = green;
// See if we've read in the correct push constants
if ((pushConstantsBlock.iFoo != 2) || (pushConstantsBlock.fBar != 1.0f))
{
resColor = red;
}
// Create a border to see the cube more easily
if ((inTexCoords.x < 0.01f) || (0.99f < inTexCoords.x)
|| (inTexCoords.y < 0.01f) || (0.99f < inTexCoords.y))
{
resColor *= vec4(0.1f, 0.1f, 0.1f, 1.0f);
}
outColor = resColor;
}
)";
int main( int /*argc*/, char ** /*argv*/ )
{
try
{
vk::UniqueInstance instance = vk::su::createInstance( AppName, EngineName, {}, vk::su::getInstanceExtensions() );
#if !defined( NDEBUG )
vk::UniqueDebugUtilsMessengerEXT debugUtilsMessenger = vk::su::createDebugUtilsMessenger( instance );
#endif
vk::PhysicalDevice physicalDevice = instance->enumeratePhysicalDevices().front();
vk::su::SurfaceData surfaceData( instance, AppName, vk::Extent2D( 500, 500 ) );
std::pair<uint32_t, uint32_t> graphicsAndPresentQueueFamilyIndex =
vk::su::findGraphicsAndPresentQueueFamilyIndex( physicalDevice, *surfaceData.surface );
vk::UniqueDevice device =
vk::su::createDevice( physicalDevice, graphicsAndPresentQueueFamilyIndex.first, vk::su::getDeviceExtensions() );
vk::UniqueCommandPool commandPool = vk::su::createCommandPool( device, graphicsAndPresentQueueFamilyIndex.first );
vk::UniqueCommandBuffer commandBuffer = std::move( device
->allocateCommandBuffersUnique( vk::CommandBufferAllocateInfo(
commandPool.get(), vk::CommandBufferLevel::ePrimary, 1 ) )
.front() );
vk::Queue graphicsQueue = device->getQueue( graphicsAndPresentQueueFamilyIndex.first, 0 );
vk::Queue presentQueue = device->getQueue( graphicsAndPresentQueueFamilyIndex.second, 0 );
vk::su::SwapChainData swapChainData( physicalDevice,
device,
*surfaceData.surface,
surfaceData.extent,
vk::ImageUsageFlagBits::eColorAttachment |
vk::ImageUsageFlagBits::eTransferSrc,
vk::UniqueSwapchainKHR(),
graphicsAndPresentQueueFamilyIndex.first,
graphicsAndPresentQueueFamilyIndex.second );
vk::su::DepthBufferData depthBufferData( physicalDevice, device, vk::Format::eD16Unorm, surfaceData.extent );
vk::su::BufferData uniformBufferData(
physicalDevice, device, sizeof( glm::mat4x4 ), vk::BufferUsageFlagBits::eUniformBuffer );
vk::su::copyToDevice(
device, uniformBufferData.deviceMemory, vk::su::createModelViewProjectionClipMatrix( surfaceData.extent ) );
vk::UniqueRenderPass renderPass = vk::su::createRenderPass(
device,
vk::su::pickSurfaceFormat( physicalDevice.getSurfaceFormatsKHR( surfaceData.surface.get() ) ).format,
depthBufferData.format );
glslang::InitializeProcess();
vk::UniqueShaderModule vertexShaderModule =
vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eVertex, vertexShaderText_PT_T );
vk::UniqueShaderModule fragmentShaderModule =
vk::su::createShaderModule( device, vk::ShaderStageFlagBits::eFragment, fragmentShaderText );
glslang::FinalizeProcess();
std::vector<vk::UniqueFramebuffer> framebuffers = vk::su::createFramebuffers(
device, renderPass, swapChainData.imageViews, depthBufferData.imageView, surfaceData.extent );
vk::su::BufferData vertexBufferData(
physicalDevice, device, sizeof( texturedCubeData ), vk::BufferUsageFlagBits::eVertexBuffer );
vk::su::copyToDevice( device,
vertexBufferData.deviceMemory,
texturedCubeData,
sizeof( texturedCubeData ) / sizeof( texturedCubeData[0] ) );
// Create binding and layout for the following, matching contents of shader
// binding 0 = uniform buffer (MVP)
vk::UniqueDescriptorSetLayout descriptorSetLayout = vk::su::createDescriptorSetLayout(
device, { { vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex } } );
/* VULKAN_KEY_START */
// Set up our push constant range, which mirrors the declaration of
vk::PushConstantRange pushConstantRanges( vk::ShaderStageFlagBits::eFragment, 0, 8 );
vk::UniquePipelineLayout pipelineLayout = device->createPipelineLayoutUnique(
vk::PipelineLayoutCreateInfo( vk::PipelineLayoutCreateFlags(), *descriptorSetLayout, pushConstantRanges ) );
// Create a single pool to contain data for our descriptor set
std::array<vk::DescriptorPoolSize, 2> poolSizes = { vk::DescriptorPoolSize( vk::DescriptorType::eUniformBuffer, 1 ),
vk::DescriptorPoolSize(
vk::DescriptorType::eCombinedImageSampler, 1 ) };
vk::UniqueDescriptorPool descriptorPool = device->createDescriptorPoolUnique(
vk::DescriptorPoolCreateInfo( vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 1, poolSizes ) );
// Populate descriptor sets
vk::UniqueDescriptorSet descriptorSet = std::move(
device->allocateDescriptorSetsUnique( vk::DescriptorSetAllocateInfo( *descriptorPool, *descriptorSetLayout ) )
.front() );
// Populate with info about our uniform buffer for MVP
vk::DescriptorBufferInfo bufferInfo( uniformBufferData.buffer.get(), 0, sizeof( glm::mat4x4 ) );
device->updateDescriptorSets(
vk::WriteDescriptorSet( *descriptorSet, 0, 0, vk::DescriptorType::eUniformBuffer, {}, bufferInfo ), {} );
// Create our push constant data, which matches shader expectations
2020-05-18 12:02:37 +00:00
std::array<unsigned, 2> pushConstants = { { (unsigned)2, (unsigned)0x3F800000 } };
// Ensure we have enough room for push constant data
assert( ( sizeof( pushConstants ) <= physicalDevice.getProperties().limits.maxPushConstantsSize ) &&
"Too many push constants" );
commandBuffer->begin( vk::CommandBufferBeginInfo() );
commandBuffer->pushConstants<unsigned>(
pipelineLayout.get(), vk::ShaderStageFlagBits::eFragment, 0, pushConstants );
/* VULKAN_KEY_END */
vk::UniquePipelineCache pipelineCache = device->createPipelineCacheUnique( vk::PipelineCacheCreateInfo() );
vk::UniquePipeline graphicsPipeline = vk::su::createGraphicsPipeline(
device,
pipelineCache,
std::make_pair( *vertexShaderModule, nullptr ),
std::make_pair( *fragmentShaderModule, nullptr ),
sizeof( texturedCubeData[0] ),
{ { vk::Format::eR32G32B32A32Sfloat, 0 }, { vk::Format::eR32G32B32A32Sfloat, 16 } },
vk::FrontFace::eClockwise,
true,
pipelineLayout,
renderPass );
vk::UniqueSemaphore imageAcquiredSemaphore = device->createSemaphoreUnique( vk::SemaphoreCreateInfo() );
vk::ResultValue<uint32_t> currentBuffer = device->acquireNextImageKHR(
swapChainData.swapChain.get(), vk::su::FenceTimeout, imageAcquiredSemaphore.get(), nullptr );
assert( currentBuffer.result == vk::Result::eSuccess );
assert( currentBuffer.value < framebuffers.size() );
std::array<vk::ClearValue, 2> clearValues;
2020-05-18 12:02:37 +00:00
clearValues[0].color = vk::ClearColorValue( std::array<float, 4>( { { 0.2f, 0.2f, 0.2f, 0.2f } } ) );
clearValues[1].depthStencil = vk::ClearDepthStencilValue( 1.0f, 0 );
vk::RenderPassBeginInfo renderPassBeginInfo( renderPass.get(),
framebuffers[currentBuffer.value].get(),
vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ),
clearValues );
commandBuffer->beginRenderPass( renderPassBeginInfo, vk::SubpassContents::eInline );
commandBuffer->bindPipeline( vk::PipelineBindPoint::eGraphics, graphicsPipeline.get() );
commandBuffer->bindDescriptorSets(
vk::PipelineBindPoint::eGraphics, pipelineLayout.get(), 0, descriptorSet.get(), nullptr );
commandBuffer->bindVertexBuffers( 0, *vertexBufferData.buffer, { 0 } );
commandBuffer->setViewport( 0,
vk::Viewport( 0.0f,
0.0f,
static_cast<float>( surfaceData.extent.width ),
static_cast<float>( surfaceData.extent.height ),
0.0f,
1.0f ) );
commandBuffer->setScissor( 0, vk::Rect2D( vk::Offset2D( 0, 0 ), surfaceData.extent ) );
commandBuffer->draw( 12 * 3, 1, 0, 0 );
commandBuffer->endRenderPass();
commandBuffer->end();
vk::UniqueFence drawFence = device->createFenceUnique( vk::FenceCreateInfo() );
vk::PipelineStageFlags waitDestinationStageMask( vk::PipelineStageFlagBits::eColorAttachmentOutput );
vk::SubmitInfo submitInfo( *imageAcquiredSemaphore, waitDestinationStageMask, *commandBuffer );
graphicsQueue.submit( submitInfo, drawFence.get() );
while ( vk::Result::eTimeout == device->waitForFences( drawFence.get(), VK_TRUE, vk::su::FenceTimeout ) )
;
vk::Result result =
presentQueue.presentKHR( vk::PresentInfoKHR( {}, *swapChainData.swapChain, currentBuffer.value ) );
switch ( result )
{
case vk::Result::eSuccess: break;
case vk::Result::eSuboptimalKHR: std::cout << "vk::Queue::presentKHR returned vk::Result::eSuboptimalKHR !\n";
default: assert( false ); // an unexpected result is returned !
}
std::this_thread::sleep_for( std::chrono::milliseconds( 1000 ) );
}
catch ( vk::SystemError & err )
{
std::cout << "vk::SystemError: " << err.what() << std::endl;
exit( -1 );
}
catch ( std::exception & err )
{
std::cout << "std::exception: " << err.what() << std::endl;
exit( -1 );
}
catch ( ... )
{
std::cout << "unknown error\n";
exit( -1 );
}
return 0;
}