36 Commits

Author SHA1 Message Date
River Riddle
b6eb26fd0e [mlir][NFC] Move around the code related to PatternRewriting to improve layering
There are several pieces of pattern rewriting infra in IR/ that really shouldn't be there. This revision moves those pieces to a better location such that they are easier to evolve in the future(e.g. with PDL). More concretely this revision does the following:

* Create a Transforms/GreedyPatternRewriteDriver.h and move the apply*andFold methods there.
The definitions for these methods are already in Transforms/ so it doesn't make sense for the declarations to be in IR.

* Create a new lib/Rewrite library and move PatternApplicator there.
This new library will be focused on applying rewrites, and will also include compiling rewrites with PDL.

Differential Revision: https://reviews.llvm.org/D89103
2020-10-26 18:01:06 -07:00
Nicolas Vasilache
e3de249a4c [mlir] Add a subtensor operation
This revision introduces a `subtensor` op, which is the counterpart of `subview` for a tensor operand. This also refactors the relevant pieces to allow reusing the `subview` implementation where appropriate.

This operation will be used to implement tiling for Linalg on tensors.
2020-10-02 05:35:30 -04:00
Eugene Burmako
5638df1950 Introduce linalg.vecmat
This patch adds a new named structured op to accompany linalg.matmul and
linalg.matvec. We needed it for our codegen, so I figured it would be useful
to add it to Linalg.

Reviewed By: nicolasvasilache, mravishankar

Differential Revision: https://reviews.llvm.org/D87292
2020-09-10 18:48:14 +02:00
Mehdi Amini
f9dc2b7079 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-19 01:19:03 +00:00
Mehdi Amini
e75bc5c791 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit d14cf45735b0d09d7d3caf0824779520dd20ef10.
The build is broken with GCC-5.
2020-08-19 01:19:03 +00:00
Mehdi Amini
d14cf45735 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  registry.insert<mlir::standalone::StandaloneDialect>();
  registry.insert<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()

Differential Revision: https://reviews.llvm.org/D85622
2020-08-18 23:23:56 +00:00
Mehdi Amini
d84fe55e0d Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit e1de2b75501e5eaf8777bd5248382a7c55a44fd6.
Broke a build bot.
2020-08-18 22:16:34 +00:00
Mehdi Amini
e1de2b7550 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.

To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.

1) For passes, you need to override the method:

virtual void getDependentDialects(DialectRegistry &registry) const {}

and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.

2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.

3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:

  mlir::DialectRegistry registry;
  mlir::registerDialect<mlir::standalone::StandaloneDialect>();
  mlir::registerDialect<mlir::StandardOpsDialect>();

Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:

  mlir::registerAllDialects(registry);

4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
2020-08-18 21:14:39 +00:00
MaheshRavishankar
5ccac05d43 [mlir][Linalg] Modify callback for getting id/nprocs in
LinalgDistribution options to allow more general distributions.

Changing the signature of the callback to send in the ranges for all
the parallel loops and expect a vector with the Value to use for the
processor-id and number-of-processors for each of the parallel loops.

Differential Revision: https://reviews.llvm.org/D86095
2020-08-18 14:04:40 -07:00
Mehdi Amini
25ee851746 Revert "Separate the Registration from Loading dialects in the Context"
This reverts commit 20563933875a9396c8ace9c9770ecf6a988c4ea6.

Build is broken on a few bots
2020-08-15 09:21:47 +00:00
Mehdi Amini
2056393387 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.

Differential Revision: https://reviews.llvm.org/D85622
2020-08-15 08:07:31 +00:00
Mehdi Amini
ba92dadf05 Revert "Separate the Registration from Loading dialects in the Context"
This was landed by accident, will reland with the right comments
addressed from the reviews.
Also revert dependent build fixes.
2020-08-15 07:35:10 +00:00
Mehdi Amini
ebf521e784 Separate the Registration from Loading dialects in the Context
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.

This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
2020-08-14 09:40:27 +00:00
MaheshRavishankar
41d4120017 [mlir][Linalg] Allow distribution scf.parallel loops generated in
Linalg to processors.

This changes adds infrastructure to distribute the loops generated in
Linalg to processors at the time of generation. This addresses use
case where the instantiation of loop is done just to distribute
them. The option to distribute is added to TilingOptions for now and
will allow specifying the distribution as a transformation option,
just like tiling and promotion are specified as options.

Differential Revision: https://reviews.llvm.org/D85147
2020-08-10 14:52:17 -07:00
Nicolas Vasilache
3110e7b077 [mlir] Introduce AffineMinSCF folding as a pattern
This revision adds a folding pattern to replace affine.min ops by the actual min value, when it can be determined statically from the strides and bounds of enclosing scf loop .

This matches the type of expressions that Linalg produces during tiling and simplifies boundary checks. For now Linalg depends both on Affine and SCF but they do not depend on each other, so the pattern is added there.
In the future this will move to a more appropriate place when it is determined.

The canonicalization of AffineMinOp operations in the context of enclosing scf.for and scf.parallel proceeds by:
  1. building an affine map where uses of the induction variable of a loop
  are replaced by `%lb + %step * floordiv(%iv - %lb, %step)` expressions.
  2. checking if any of the results of this affine map divides all the other
  results (in which case it is also guaranteed to be the min).
  3. replacing the AffineMinOp by the result of (2).

The algorithm is functional in simple parametric tiling cases by using semi-affine maps. However simplifications of such semi-affine maps are not yet available and the canonicalization does not succeed yet.

Differential Revision: https://reviews.llvm.org/D82009
2020-08-07 14:30:38 -04:00
Thomas Raoux
a1b9fb220f [mlir][linalg] Add vectorization transform for CopyOp
CopyOp get vectorized to vector.transfer_read followed by vector.transfer_write

Differential Revision: https://reviews.llvm.org/D83739
2020-07-22 12:40:42 -07:00
Nicolas Vasilache
56c638b5c1 [mlir][Linalg] Generalize Vectorization of Linalg contractions
This revision adds support for vectorizing named and generic contraction ops to vector.contract. Cases in which the memref is 0-D are special cased to emit std.load/std.store instead of vector.transfer. Relevant tests are added.

Differential revision: https://reviews.llvm.org/D83307
2020-07-10 10:28:34 -04:00
Benjamin Kramer
b44470547e Make helpers static. NFC. 2020-07-09 13:48:56 +02:00
Nicolas Vasilache
b54a4d0f8f [mlir][Linalg] NFC - Make useFullTileBuffersByDefault option take a boolean. 2020-06-05 17:44:29 -04:00
Nicolas Vasilache
e349fb70a2 [mlir][Linalg] NFC - Make markers use Identifier instead of StringRef
Summary: This removes string ownership worries by putting everything into the context and allows more constructing identifiers programmatically.

Reviewers: ftynse

Subscribers: mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, frgossen, Kayjukh, jurahul

Tags: #mlir

Differential Revision: https://reviews.llvm.org/D81027
2020-06-03 05:52:32 -04:00
Nicolas Vasilache
1ee114322c [mlir][Linalg][Vector] Add forwarding patterns between linalg.copy and vector.transfer
This revision adds custom rewrites for patterns that arise during linalg structured
ops vectorization. These patterns allow the composition of linalg promotion,
vectorization and removal of redundant copies.

The patterns are voluntarily limited and restrictive atm.
More robust behavior will be implemented once more powerful side effect modeling and analyses are available on view/subview.

On the transfer_read side, the following pattern is rewritten:
```
   %alloc = ...
   [optional] %view = std.view %alloc ...
   %subView = subview %allocOrView ...
   [optional] linalg.fill(%allocOrView, %cst) ...
   ...
   linalg.copy(%in, %subView) ...
   vector.transfer_read %allocOrView[...], %cst ...
```
into
```
   [unchanged] %alloc = ...
   [unchanged] [optional] %view = std.view %alloc ...
   [unchanged] [unchanged] %subView = subview %allocOrView ...
   ...
   vector.transfer_read %in[...], %cst ...
```

On the transfer_write side, the following pattern is rewriten:
```
   %alloc = ...
   [optional] %view = std.view %alloc ...
   %subView = subview %allocOrView...
   ...
   vector.transfer_write %..., %allocOrView[...]
   linalg.copy(%subView, %out)
```

Differential Revision: https://reviews.llvm.org/D80728
2020-05-29 08:08:34 -04:00
MaheshRavishankar
0ed2d4c7cb [mlir][linalg] Allow promotion to use callbacks for
alloc/dealloc/copies.

Add options to LinalgPromotion to use callbacks for implementating the
allocation, deallocation of buffers used for the promoted subviews,
and to copy data into and from the original subviews to the allocated
buffers.
Also some misc. cleanup of the code.

Differential Revision: https://reviews.llvm.org/D80365
2020-05-26 21:33:57 -07:00
MaheshRavishankar
5759e47316 [mlir][Linalg] Avoid using scf.parallel for non-parallel loops in Linalg ops.
Modifying the loop nest builder for generating scf.parallel loops to
not generate scf.parallel loops for non-parallel iterator types in
Linalg operations. The existing implementation incorrectly generated
scf.parallel for all tiled loops. It is rectified by refactoring logic
used while lowering to loops that accounted for this.

Differential Revision: https://reviews.llvm.org/D80188
2020-05-26 21:33:57 -07:00
Nicolas Vasilache
004a3d4f56 [mlir][Linalg] Refactor linalg tiling
Summary:
This revision refactors the Linalg tiling pass to be written as pattern applications and retires the use of the folder in Linalg tiling.
In the early days, tiling was written as a pass that would create (partially) folded and canonicalized operations on the fly for better composability.
As this evolves towards composition of patterns, the pass-specific folder is counter-productive and is retired.
The tiling options struct evolves to take a tile size creation function which allows materializing tile sizes on the fly (in particular constant tile sizes). This plays better with folding and DCE.

With the folder going away in Tiling, the check on whether subviews are the same in linalg fusion needs to be more robust. This revision also implements such a check.

In the current form, there are still some canonicalizations missing due to  AffineMin/Max ops fed by scf::ForOp. These will be improved at a later time.

Differential Revision: https://reviews.llvm.org/D80267
2020-05-20 09:39:56 -04:00
Benjamin Kramer
350dadaa8a Give helpers internal linkage. NFC. 2020-05-19 22:16:37 +02:00
Pierre Oechsel
d1866f8947 [MLIR] [Linalg] Add option to use the partial view after promotion.
For now the promoted buffer is indexed using the `full view`. The full view might be
slightly bigger than the partial view (which is accounting for boundaries).
Unfortunately this does not compose easily with other transformations when multiple buffers
with shapes related to each other are involved.
Take `linalg.matmul A B C` (with A of size MxK, B of size KxN and C of size MxN) and suppose we are:
- Tiling over M by 100
- Promoting A only

This is producing a `linalg.matmul promoted_A B subview_C` where `promoted_A` is a promoted buffer
of `A` of size (100xK) and `subview_C` is a subview of size mxK where m could be smaller than 100 due
to boundaries thus leading to a possible incorrect behavior.

We propose to:
- Add a new parameter to the tiling promotion allowing to enable the use of the full tile buffer.
- By default all promoted buffers will be indexed by the partial view.

Note that this could be considered as a breaking change in comparison to the way the tiling promotion
was working.

Differential Revision: https://reviews.llvm.org/D79927
2020-05-18 18:28:18 +02:00
Nicolas Vasilache
d12d05a731 [mlir][Linalg] Introduce a helper function for staged pattern application
Summary:
This revision introduces a helper function to allow applying rewrite patterns, interleaved with more global transformations, in a staged fashion:
1. the first stage consists of an OwningRewritePatternList. The RewritePattern in this list are applied once and in order.
2. the second stage consists of a single OwningRewritePattern that is applied greedily until convergence.
3. the third stage consists of applying a lambda, generally used for non-local transformation effects.

This allows creating custom fused transformations where patterns can be ordered and applied at a finer granularity than a sequence of traditional compiler passes.

A test that exercises these behaviors is added.

Differential Revision: https://reviews.llvm.org/D79518
2020-05-11 16:46:30 -04:00
Nicolas Vasilache
8dbbb22383 [mlir][Linalg] NFC - Refactor and simplify Promotion
Summary: This revision introduces LinalgPromotionOptions to more easily control the application of promotion patterns. It also simplifies the different entry points into Promotion in preparation for some behavior change in subsequent revisions.

Differential Revision: https://reviews.llvm.org/D79489
2020-05-11 10:44:45 -04:00
Nicolas Vasilache
307cfdf533 [mlir][Linalg] Mostly NFC - Refactor Linalg patterns and transformations.
Linalg transformations are currently exposed as DRRs.
Unfortunately RewriterGen does not play well with the line of work on named linalg ops which require variadic operands and results.
Additionally, DRR is arguably not the right abstraction to expose compositions of such patterns that don't rely on SSA use-def semantics.

This revision abandons DRRs and exposes manually written C++ patterns.

Refactorings and cleanups are performed to uniformize APIs.
This refactoring will allow replacing the currently manually specified Linalg named ops.

A collateral victim of this refactoring is the `tileAndFuse` DRR, and the one associated test, which will be revived at a later time.

Lastly, the following 2 tests do not add value and are altered:
- a dot_perm tile + interchange test does not test anything new and is removed
- a dot tile + lower to loops does not need 2-D tiling and is trimmed.
2020-05-04 11:17:37 -04:00
Uday Bondhugula
a5b9316b24 [MLIR][NFC] applyPatternsGreedily -> applyPatternsAndFoldGreedily
Rename mlir::applyPatternsGreedily -> applyPatternsAndFoldGreedily. The
new name is a more accurate description of the method - it performs
both, application of the specified patterns and folding of all ops in
the op's region irrespective of whether any patterns have been supplied.

Differential Revision: https://reviews.llvm.org/D77478
2020-04-10 12:55:21 +05:30
River Riddle
80aca1eaf7 [mlir][Pass] Remove the use of CRTP from the Pass classes
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.

Differential Revision: https://reviews.llvm.org/D77350
2020-04-07 14:08:52 -07:00
Mehdi Amini
c64770506b Remove static registration for dialects, and the "alwayslink" hack for passes
In the previous state, we were relying on forcing the linker to include
all libraries in the final binary and the global initializer to self-register
every piece of the system. This change help moving away from this model, and
allow users to compose pieces more freely. The current change is only "fixing"
the dialect registration and avoiding relying on "whole link" for the passes.
The translation is still relying on the global registry, and some refactoring
is needed to make this all more convenient.

Differential Revision: https://reviews.llvm.org/D74461
2020-02-12 09:13:02 +00:00
Mehdi Amini
308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00
Geoffrey Martin-Noble
933b421256 [mlir] Add missing dependency on LinalgUtils
Differential Revision: https://reviews.llvm.org/D72821
2020-01-16 23:41:26 +00:00
Mehdi Amini
56222a0694 Adjust License.txt file to use the LLVM license
PiperOrigin-RevId: 286906740
2019-12-23 15:33:37 -08:00
Nicolas Vasilache
2c4985816f Split Linalg declarative patterns from specific test patterns - NFC
This will make it easier to scale out test patterns and build specific passes that do not interfere with independent testing.

PiperOrigin-RevId: 281736335
2019-11-21 06:40:17 -08:00