Handles clang::DiagnosticsEngine and clang::DiagnosticIDs.
For DiagnosticIDs, this mostly migrates from `new DiagnosticIDs` to
convenience method `DiagnosticIDs::create()`.
Part of cleanup https://github.com/llvm/llvm-project/issues/151026
This patch ensures we can find decls in submodules during expression
evaluation. Previously, submodules would have all their decls marked as
`Hidden`. When Clang asked LLDB for decls, it would see them in the
submodule but `clang::Sema` would reject them because they weren't
`Visible` (specifically, `getAcceptableDecl` would fail during
`CppNameLookup`). Here we just mark the submodule as visible to work
around this problem.
This reverts commit 57f3151a3144259f4e830fc43a1424e4c1f15985.
LLDB was hitting an assert when compiling the `std` module. The `std`
module was being pulled in because we use `#import <cstdio>` in the test
to set a breakpoint on `puts`. That's redundant and to work around the
crash we just remove that include. The underlying issue of compiling the
`std` module still exists and I'll investigate that separately. The
reason it started failing after the `ClangModulesDeclVendor` patch is that we would previously just fail to load the modulemap (and thus not load any of the modules). Now we do load the modulemap (and modules) when we prepare for parsing the expression.
The TestTemplateWithSameArg.py API test is crashing on macOS with
this change. Michael is going to look into it; reverting for now
to unblock the CI bots.
This reverts commit 052c70451afb7323ef72f321f3b0b5abb024b302.
`parseAndLoadModuleMapFile` returns `true` on error. This seems to have
always been an issue? This is now preventing me from fixing a different
modules related issue. So this patch checks the return value correctly.
This reverts commit e2a885537f11f8d9ced1c80c2c90069ab5adeb1d. Build failures were fixed right away and reverting the original commit without the fixes breaks the build again.
The `DiagnosticOptions` class is currently intrusively
reference-counted, which makes reasoning about its lifetime very
difficult in some cases. For example, `CompilerInvocation` owns the
`DiagnosticOptions` instance (wrapped in `llvm::IntrusiveRefCntPtr`) and
only exposes an accessor returning `DiagnosticOptions &`. One would
think this gives `CompilerInvocation` exclusive ownership of the object,
but that's not the case:
```c++
void shareOwnership(CompilerInvocation &CI) {
llvm::IntrusiveRefCntPtr<DiagnosticOptions> CoOwner = &CI.getDiagnosticOptions();
// ...
}
```
This is a perfectly valid pattern that is being actually used in the
codebase.
I would like to ensure the ownership of `DiagnosticOptions` by
`CompilerInvocation` is guaranteed to be exclusive. This can be
leveraged for a copy-on-write optimization later on. This PR changes
usages of `DiagnosticOptions` across `clang`, `clang-tools-extra` and
`lldb` to not be intrusively reference-counted.
Instead of eagerly populating the `clang::ModuleMap` when looking up a
module by name, this patch changes `HeaderSearch` to only load the
modules that are actually used.
This introduces `ModuleMap::findOrLoadModule` which will load modules
from parsed but not loaded module maps. This cannot be used anywhere
that the module loading code calls into as it can create infinite
recursion.
This currently just reparses module maps when looking up a module by
header. This is fine as redeclarations are allowed from the same file,
but future patches will also make looking up a module by header lazy.
This patch changes the shadow.m test to use explicitly built modules and
`#import`. This test and the shadow feature are very brittle and do not
work in general. The test relied on pcm files being left behind by prior
failing clang invocations that were then reused by the last invocation.
If you clean the cache then the last invocation will always fail. This
is because the input module map and the `-fmodule-map-file=` module map
are parsed in the same module scope, and `-fmodule-map-file=` is
forwarded to implicit module builds. That means you are guaranteed to
hit a module redeclaration error if the TU actually imports the module
it is trying to shadow.
This patch changes when we load A2's module map to after the `A` module
has been loaded, which sets the `IsFromModuleFile` bit on `A`. This
means that A2's `A` is skipped entirely instead of creating a shadow
module, and we get textual inclusion. It is possible to construct a case
where this would happen before this patch too.
An upcoming patch in this series will rework shadowing to work in the
general case, but that's only possible once header -> module lookup is
lazy too.
This PR makes it so that `CompilerInvocation` needs to be provided to
`CompilerInstance` on construction. There are a couple of benefits in my
view:
* Making it impossible to mis-use some `CompilerInstance` APIs. For
example there are cases, where `createDiagnostics()` was called before
`setInvocation()`, causing the `DiagnosticEngine` to use the
default-constructed `DiagnosticOptions` instead of the intended ones.
* This shrinks `CompilerInstance`'s state space.
* This makes it possible to access **the** invocation in
`CompilerInstance`'s constructor (to be used in a follow-up).
This PR hides the reference-counted pointer that holds `TargetOptions`
from the public API of `CompilerInvocation`. This gives
`CompilerInvocation` an exclusive control over the lifetime of this
member, which will eventually be leveraged to implement a copy-on-write
behavior.
There are two clients that currently share ownership of that pointer:
* `TargetInfo` - This was refactored to hold a non-owning reference to
`TargetOptions`. The options object is typically owned by the
`CompilerInvocation` or by the new `CompilerInstance::AuxTargetOpts` for
the auxiliary target. This needed a bit of care in `ASTUnit::Parse()` to
keep the `CompilerInvocation` alive.
* `clangd::PreambleData` - This was refactored to exclusively own the
`TargetOptions` that get moved out of the `CompilerInvocation`.
This PR reland https://github.com/llvm/llvm-project/pull/135808, fixed
some missed changes in LLDB.
I found this issue when I working on
https://github.com/llvm/llvm-project/pull/107168.
Currently we have many similiar data structures like:
- std::pair<IdentifierInfo *, SourceLocation>.
- Element type of ModuleIdPath.
- IdentifierLocPair.
- IdentifierLoc.
This PR unify these data structures to IdentifierLoc, moved
IdentifierLoc definition to SourceLocation.h, and deleted other similer
data structures.
---------
Signed-off-by: yronglin <yronglin777@gmail.com>
As specified in the docs,
1) raw_string_ostream is always unbuffered and
2) the underlying buffer may be used directly
( 65b13610a5226b84889b923bae884ba395ad084d for further reference )
* Don't call raw_string_ostream::flush(), which is essentially a no-op.
* Avoid unneeded calls to raw_string_ostream::str(), to avoid excess
indirection.
Following the work done by @jdevlieghere in D143690, this changes how Clang module build
events are emitted.
Instead of one Progress event per module being built, a single Progress event is used to
encompass all modules, and each module build is sent as an `Increment` update.
Differential Revision: https://reviews.llvm.org/D147248
Update the Clang diagnostic consumer (in ClangModulesDeclVendor) to report
progress on Clang module builds, as both progress events and expression logs.
Module build remarks are enabled by with clang's `-Rmodule-build` flag.
With this change, command line users of lldb will see progress events showing
which modules are being built, and - by how long they stay on screen - how much
time it takes to build them. IDEs that show progress events can show these
updates if desired.
This does not show module-import remarks, although that may be added as a
future change.
Differential Revision: https://reviews.llvm.org/D140056
D127284 introduced a new language option which is not benign from modules
perspective. Before this patch lldb would set up the compiler invocation and
later enable incremental processing. Post-D127284 this does not work because
the option causes a module hash mismatch for implicit modules.
In addition, D127284 enables parsing statements on the global scope if
incremental processing is on and thus `syntax_error_for_lldb_to_find` was
rightfully not recognized as a declaration and is considered a statement
which produces a slightly different diagnostic.
Thanks to Michael Buch for the help in understanding this issue. This patch
should appease the lldb bots.
More discussion available at: https://reviews.llvm.org/D127284
When a process gets restarted TypeSystem objects associated with it
may get deleted, and any CompilerType objects holding on to a
reference to that type system are a use-after-free in waiting. Because
of the SBAPI, we don't have tight control over where CompilerTypes go
and when they are used. This is particularly a problem in the Swift
plugin, where the scratch TypeSystem can be restarted while the
process is still running. The Swift plugin has a lock to prevent
abuse, but where there's a lock there can be bugs.
This patch changes CompilerType to store a std::weak_ptr<TypeSystem>.
Most of the std::weak_ptr<TypeSystem>* uglyness is hidden by
introducing a wrapper class CompilerType::WrappedTypeSystem that has a
dyn_cast_or_null() method. The only sites that need to know about the
weak pointer implementation detail are the ones that deal with
creating TypeSystems.
rdar://101505232
Differential Revision: https://reviews.llvm.org/D136650
In C++20 modules imports must be together and at the start of the module.
Rather than growing more ad-hoc flags to test state, this keeps track of the
phase of of a valid module TU (first decl, global module frag, module,
private module frag). If the phasing is broken (with some diagnostic) the
pattern does not conform to a valid C++20 module, and we set the state
accordingly.
We can thus issue diagnostics when imports appear in the wrong places and
decouple the C++20 modules state from other module variants (modules-ts and
clang modules). Additionally, we attempt to diagnose wrong imports before
trying to find the module where possible (the latter will generally emit an
unhelpful diagnostic about the module not being available).
Although this generally simplifies the handling of C++20 module import
diagnostics, the motivation was that, in particular, it allows detecting
invalid imports like:
import module A;
int some_decl();
import module B;
where being in a module purview is insufficient to identify them.
Differential Revision: https://reviews.llvm.org/D118893
Recently we observed high memory pressure caused by clang during some parallel builds.
We discovered that we have several projects that have a large number of #define directives
in their TUs (on the order of millions), which caused huge memory consumption in clang due
to a lot of allocations for MacroInfo. We would like to reduce the memory overhead of
clang for a single #define to reduce the memory overhead for these files, to allow us to
reduce the memory pressure on the system during highly parallel builds. This change achieves
that by removing the SmallVector in MacroInfo and instead storing the tokens in an array
allocated using the bump pointer allocator, after all tokens are lexed.
The added unit test with 1000000 #define directives illustrates the problem. Prior to this
change, on arm64 macOS, clang's PP bump pointer allocator allocated 272007616 bytes, and
used roughly 272 bytes per #define. After this change, clang's PP bump pointer allocator
allocates 120002016 bytes, and uses only roughly 120 bytes per #define.
For an example test file that we have internally with 7.8 million #define directives, this
change produces the following improvement on arm64 macOS: Persistent allocation footprint for
this test case file as it's being compiled to LLVM IR went down 22% from 5.28 GB to 4.07 GB
and the total allocations went down 14% from 8.26 GB to 7.05 GB. Furthermore, this change
reduced the total number of allocations made by the system for this clang invocation from
1454853 to 133663, an order of magnitude improvement.
The recommit fixes the LLDB build failure.
Differential Revision: https://reviews.llvm.org/D117348
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
This reverts commit a40db5502b2515a6f2f1676b5d7a655ae0f41179.
and follow-up d636b881bb9214938973098a012fad453082c444
Somewhat speculative, likely broke check-clang on Windows:
https://reviews.llvm.org/D92975#2453482
The bots just told me about a place in LLDB I missed in
a40db5502b2515a6f2f1676b5d7a655ae0f41179 when changing
`HeaderSearch::LoadedModuleMaps`, but I think this will fix it.
LLDB is currently always activating C++ when parsing expressions as LLDB itself
is using C++ features when creating the final AST that will be codegen'd
(specifically, references to variables, namespaces and using declarations are
used).
This is causing problems for users that have variables in non-C++ programs (e.g.
plain C or Objective-C) that have names which are keywords in C++. Expressions
referencing those variables fail to parse as LLDB's Clang parser thinks those
identifiers are C++ keywords and not identifiers that may belong to a
declaration.
We can't just disable C++ in the expression parser for those situations as
replacing the functionality of the injected C++ code isn't trivial. So this
patch is just disabling most keywords that are exclusive to C++ in LLDB's Clang
parser when we are in a non-C++ expression. There are a few keywords we can't
disable for now:
* `using` as that's currently used in some situations to inject variables into the expression function.
* `__null` as that's used by LLDB to define `NULL`/`Nil`/`nil`.
Getting rid of these last two keywords is possible but is a large enough change
that this will be handled in follow up patches.
Note that this only changes the keyword status of those tokens but this patch
does not remove any C++ functionality from the expression parser. The type
system still follows C++ rules and so does the rest of the expression parser.
There is another small change that gives the hardcoded macro definitions in LLDB
a higher precedence than the macros imported from the Objective-C modules. The
reason for this is that the Objective-C modules in LLDB are actually parsed in
Objective-C++ mode and they end up providing the C++ definitions of certain
system macros (like `NULL` being defined as `nullptr`). So we have to move the
LLDB definition forward and surround the definition from the module with an
`#ifdef` to make sure that we use the correct LLDB definition that doesn't
reference C++ keywords. Or to give an example, this is how the expression source
code changes:
Before:
```
#define NULL (nullptr) // injected module definition
#ifndef NULL
#define NULL (__null) // hardcoded LLDB definition
#endif
```
After:
```
#ifndef NULL
#define NULL (__null) // hardcoded LLDB definition
#endif
#ifndef NULL
#define NULL (nullptr) // injected module definition
#endif
```
Fixes rdar://10356912
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D82770
Extract all the provider related logic from Reproducer.h and move it
into its own header ReproducerProvider.h. These classes are seeing most
of the development these days and this reorganization reduces
incremental compilation from ~520 to ~110 files when making changes to
the new header.
Summary:
When the ClangModulesDeclVendor currently fails it just prints very basic and often incomplete diagnostics without any source locations:
```
(lldb) p @import Foundation
error: while importing modules:
'foo/bar.h' file not found
could not build module 'Darwin'
[...]
```
or even just
```
(lldb) p @import Foundation
error: while importing modules:
could not build module 'Darwin'
[...]
```
These diagnostics help neither the user nor us with figuring out what is the reason for the failure.
This patch wires up a full TextDiagnosticPrinter in the ClangModulesDeclVendor and makes
sure we always return the error stream to the user when we fail to compile our modules.
Fixes rdar://63216849
Reviewers: aprantl, jdoerfert
Reviewed By: aprantl
Subscribers: JDevlieghere
Differential Revision: https://reviews.llvm.org/D79947
Summary:
This change represents the move of ClangASTImporter, ClangASTMetadata,
ClangExternalASTSourceCallbacks, ClangUtil, CxxModuleHandler, and
TypeSystemClang from lldbSource to lldbPluginExpressionParserClang.h
This explicitly removes knowledge of clang internals from lldbSymbol,
moving towards a more generic core implementation of lldb.
Reviewers: JDevlieghere, davide, aprantl, teemperor, clayborg, labath, jingham, shafik
Subscribers: emaste, mgorny, arphaman, jfb, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73661