llvm-project/llvm/test/CodeGen/RISCV/split-offsets.ll
Alex Bradbury 3d2650bdeb
[RISCV] Use addi rather than addiw for immediates materialised by lui+addi(w) pairs when possible (#141663)
The logic in RISCVMatInt would previously produce lui+addiw on RV64
whenever a 32-bit integer must be materialised and the Hi20 and Lo12
parts are non-zero. However, sometimes addi can be used equivalently
(whenever the sign extension behaviour of addiw would be a no-op). This
patch moves to using addiw only when necessary. Although there is
absolutely no advantage in terms of compressibility or performance, this
has the following advantages:
* It's more consistent with logic used elsewhere in the backend. For
instance, RISCVOptWInstrs will try to convert addiw to addi on the basis
it reduces test diffs vs RV32.
* This matches the lowering GCC does in its codegen path. Unlike LLVM,
GCC seems to have different expansion logic for the assembler vs
codegen. For codegen it will use lui+addi if possible, but expanding
`li` in the assembler will always produces lui+addiw as LLVM did prior
to this commit. As someone who has been looking at a lot of gcc vs clang
diffs lately, reducing unnecessary divergence is of at least some value.
* As the diff for fold-mem-offset.ll shows, we can fold memory offsets
in more cases when addi is used. Memory offset folding could be taught
to recognise when the addiw could be replaced with an addi, but that
seems unnecessary when we can simply change the logic in RISCVMatInt.

As pointed out by @topperc during review, making this change without
modifying RISCVOptWInstrs risks introducing some cases where we fail to
remove a sext.w that we removed before. I've incorporated a patch based
on a suggestion from Craig that avoids it, and also adds appropriate
RISCVOptWInstrs test cases.

The initial patch description noted that the main motivation was to
avoid unnecessary differences both for RV32/RV64 and when comparing GCC,
but noted that very occasionally we see a benefit from memory offset
folding kicking in when it didn't before. Looking at the dynamic
instruction count difference for SPEC benchmarks targeting rva22u64 and
it shows we actually get a meaningful
~4.3% reduction in dynamic icount for 519.lbm_r. Looking at the data
more closely, the codegen difference is in `LBM_performStreamCollideTRT`
which as a function accounts for ~98% for dynamically executed
instructions and the codegen diffs appear to be a knock-on effect of the
address merging reducing register pressure right from function entry
(for instance, we get a big reduction in dynamically executed loads in
that function).

Below is the icount data (rva22u64 -O3, no LTO):
```
Benchmark                Baseline            This PR   Diff (%)
============================================================
500.perlbench_r         174116601991    174115795810     -0.00%
502.gcc_r               218903280858    218903215788     -0.00%
505.mcf_r               131208029185    131207692803     -0.00%
508.namd_r              217497594322    217497594297     -0.00%
510.parest_r            289314486153    289313577652     -0.00%
511.povray_r             30640531048     30640765701      0.00%
519.lbm_r                95897914862     91712688050     -4.36%
520.omnetpp_r           134641549722    134867015683      0.17%
523.xalancbmk_r         281462762992    281432092673     -0.01%
525.x264_r              379776121941    379535558210     -0.06%
526.blender_r           659736022025    659738387343      0.00%
531.deepsjeng_r         349122867552    349122867481     -0.00%
538.imagick_r           238558760552    238558753269     -0.00%
541.leela_r             406578560612    406385135260     -0.05%
544.nab_r               400997131674    400996765827     -0.00%
557.xz_r                130079522194    129945515709     -0.10%

```

The instcounting setup I use doesn't have good support for drilling down
into functions from outside the linked executable (e.g. libc). The
difference in omnetpp all seems to come from there, and does not reflect
any degradation in codegen quality.

I can confirm with the current version of the PR there is no change in
the number of static sext.w across all the SPEC 2017 benchmarks
(rva22u64 O3)

Co-authored-by: Craig Topper <craig.topper@sifive.com>
2025-06-02 22:24:50 +01:00

180 lines
5.5 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=riscv32 -verify-machineinstrs < %s \
; RUN: | FileCheck %s -check-prefix=RV32I
; RUN: llc -mtriple=riscv64 -verify-machineinstrs < %s \
; RUN: | FileCheck %s -check-prefix=RV64I
; Check that memory accesses to array elements with large offsets have those
; offsets split into a base offset, plus a smaller offset that is folded into
; the memory operation. We should also only compute that base offset once,
; since it can be shared for all memory operations in this test.
define void @test1(ptr %sp, ptr %t, i32 %n) {
; RV32I-LABEL: test1:
; RV32I: # %bb.0: # %entry
; RV32I-NEXT: lw a0, 0(a0)
; RV32I-NEXT: lui a2, 20
; RV32I-NEXT: li a3, 2
; RV32I-NEXT: add a1, a1, a2
; RV32I-NEXT: add a0, a0, a2
; RV32I-NEXT: li a2, 1
; RV32I-NEXT: sw a3, -1920(a0)
; RV32I-NEXT: sw a2, -1916(a0)
; RV32I-NEXT: sw a2, -1920(a1)
; RV32I-NEXT: sw a3, -1916(a1)
; RV32I-NEXT: ret
;
; RV64I-LABEL: test1:
; RV64I: # %bb.0: # %entry
; RV64I-NEXT: ld a0, 0(a0)
; RV64I-NEXT: lui a2, 20
; RV64I-NEXT: li a3, 2
; RV64I-NEXT: add a1, a1, a2
; RV64I-NEXT: add a0, a0, a2
; RV64I-NEXT: li a2, 1
; RV64I-NEXT: sw a3, -1920(a0)
; RV64I-NEXT: sw a2, -1916(a0)
; RV64I-NEXT: sw a2, -1920(a1)
; RV64I-NEXT: sw a3, -1916(a1)
; RV64I-NEXT: ret
entry:
%s = load ptr, ptr %sp
%gep0 = getelementptr [65536 x i32], ptr %s, i64 0, i32 20000
%gep1 = getelementptr [65536 x i32], ptr %s, i64 0, i32 20001
%gep2 = getelementptr [65536 x i32], ptr %t, i64 0, i32 20000
%gep3 = getelementptr [65536 x i32], ptr %t, i64 0, i32 20001
store i32 2, ptr %gep0
store i32 1, ptr %gep1
store i32 1, ptr %gep2
store i32 2, ptr %gep3
ret void
}
; Ditto. Check it when the GEPs are not in the entry block.
define void @test2(ptr %sp, ptr %t, i32 %n) {
; RV32I-LABEL: test2:
; RV32I: # %bb.0: # %entry
; RV32I-NEXT: li a3, 0
; RV32I-NEXT: lw a0, 0(a0)
; RV32I-NEXT: lui a4, 20
; RV32I-NEXT: add a1, a1, a4
; RV32I-NEXT: add a0, a0, a4
; RV32I-NEXT: blez a2, .LBB1_2
; RV32I-NEXT: .LBB1_1: # %while_body
; RV32I-NEXT: # =>This Inner Loop Header: Depth=1
; RV32I-NEXT: addi a4, a3, 1
; RV32I-NEXT: sw a4, -1920(a0)
; RV32I-NEXT: sw a3, -1916(a0)
; RV32I-NEXT: sw a4, -1920(a1)
; RV32I-NEXT: sw a3, -1916(a1)
; RV32I-NEXT: mv a3, a4
; RV32I-NEXT: blt a4, a2, .LBB1_1
; RV32I-NEXT: .LBB1_2: # %while_end
; RV32I-NEXT: ret
;
; RV64I-LABEL: test2:
; RV64I: # %bb.0: # %entry
; RV64I-NEXT: li a3, 0
; RV64I-NEXT: ld a0, 0(a0)
; RV64I-NEXT: lui a4, 20
; RV64I-NEXT: add a1, a1, a4
; RV64I-NEXT: add a0, a0, a4
; RV64I-NEXT: sext.w a2, a2
; RV64I-NEXT: blez a2, .LBB1_2
; RV64I-NEXT: .LBB1_1: # %while_body
; RV64I-NEXT: # =>This Inner Loop Header: Depth=1
; RV64I-NEXT: addiw a4, a3, 1
; RV64I-NEXT: sw a4, -1920(a0)
; RV64I-NEXT: sw a3, -1916(a0)
; RV64I-NEXT: sw a4, -1920(a1)
; RV64I-NEXT: sw a3, -1916(a1)
; RV64I-NEXT: mv a3, a4
; RV64I-NEXT: blt a4, a2, .LBB1_1
; RV64I-NEXT: .LBB1_2: # %while_end
; RV64I-NEXT: ret
entry:
%s = load ptr, ptr %sp
br label %while_cond
while_cond:
%phi = phi i32 [ 0, %entry ], [ %i, %while_body ]
%gep0 = getelementptr [65536 x i32], ptr %s, i64 0, i32 20000
%gep1 = getelementptr [65536 x i32], ptr %s, i64 0, i32 20001
%gep2 = getelementptr [65536 x i32], ptr %t, i64 0, i32 20000
%gep3 = getelementptr [65536 x i32], ptr %t, i64 0, i32 20001
%cmp = icmp slt i32 %phi, %n
br i1 %cmp, label %while_body, label %while_end
while_body:
%i = add i32 %phi, 1
%j = add i32 %phi, 2
store i32 %i, ptr %gep0
store i32 %phi, ptr %gep1
store i32 %i, ptr %gep2
store i32 %phi, ptr %gep3
br label %while_cond
while_end:
ret void
}
; GEPs have been manually split so the base GEP does not get used by any memory
; instructions. Make sure we use an offset and common base for each of the
; stores.
define void @test3(ptr %t) {
; RV32I-LABEL: test3:
; RV32I: # %bb.0: # %entry
; RV32I-NEXT: lui a1, 20
; RV32I-NEXT: li a2, 2
; RV32I-NEXT: add a0, a0, a1
; RV32I-NEXT: li a1, 3
; RV32I-NEXT: sw a2, -1916(a0)
; RV32I-NEXT: sw a1, -1912(a0)
; RV32I-NEXT: ret
;
; RV64I-LABEL: test3:
; RV64I: # %bb.0: # %entry
; RV64I-NEXT: lui a1, 20
; RV64I-NEXT: li a2, 2
; RV64I-NEXT: add a0, a0, a1
; RV64I-NEXT: li a1, 3
; RV64I-NEXT: sw a2, -1916(a0)
; RV64I-NEXT: sw a1, -1912(a0)
; RV64I-NEXT: ret
entry:
%splitgep = getelementptr i8, ptr %t, i64 80000
%0 = getelementptr i8, ptr %splitgep, i64 4
%1 = getelementptr i8, ptr %splitgep, i64 8
store i32 2, ptr %0, align 4
store i32 3, ptr %1, align 4
ret void
}
; Test from PR62734.
define void @test4(ptr %dest) {
; RV32I-LABEL: test4:
; RV32I: # %bb.0:
; RV32I-NEXT: addi a0, a0, 2047
; RV32I-NEXT: li a1, 1
; RV32I-NEXT: sb a1, 1(a0)
; RV32I-NEXT: sb a1, 2(a0)
; RV32I-NEXT: sb a1, 3(a0)
; RV32I-NEXT: sb a1, 4(a0)
; RV32I-NEXT: ret
;
; RV64I-LABEL: test4:
; RV64I: # %bb.0:
; RV64I-NEXT: addi a0, a0, 2047
; RV64I-NEXT: li a1, 1
; RV64I-NEXT: sb a1, 1(a0)
; RV64I-NEXT: sb a1, 2(a0)
; RV64I-NEXT: sb a1, 3(a0)
; RV64I-NEXT: sb a1, 4(a0)
; RV64I-NEXT: ret
%p1 = getelementptr i8, ptr %dest, i32 2048
store i8 1, ptr %p1
%p2 = getelementptr i8, ptr %dest, i32 2049
store i8 1, ptr %p2
%p3 = getelementptr i8, ptr %dest, i32 2050
store i8 1, ptr %p3
%p4 = getelementptr i8, ptr %dest, i32 2051
store i8 1, ptr %p4
ret void
}